Emerging Trends in Big Data Software (via the Berkeley Data Analytics Stack)

Michael Franklin 24 March 2016 Paris Database Summit

Big Data – A Bad Definition

Data sets, typically consisting of billions or trillions of records, that are so vast and complex that they require new and powerful computational resources to process.

- Dictionary.com

Big Data as a Resource

"For a long time, we thought that Tamoxifen was roughly 80% effective for breast cancer patients. But now we know much more:


we know that it's 100% effective in 70% to 80% of the patients, and ineffective in the rest."

- Tim O'Reilly et al. "How Data Science is Transforming Health Care" 2012

With enough of the right data you can determine precisely who the treatment will work for.

Thus, even a 1% effective drug could save lives

Big Data Software Growth

Previously: 1980's & 90's: Parallel Database systems; early 2000's Google MapReduce Regardless of your definition...

The technology has fundamentally changed.

- <u>Massively scalable</u> processing and storage
- <u>Pay-as-you-go</u> processing and storage
- <u>Flexible</u> schema on read vs. schema on write
- Easier integration of search, query and analysis
- Variety of languages for interface/interaction
- Open source ecosystem driving innovation

Big Data Software Moves Fast

We'll look at the following trends:

- I) Integrated Stacks vs Silos
- 2) "Real-Time" Redux
- 3) Machine Learning and Advanced Analytics
- 4) Serving Data and Models

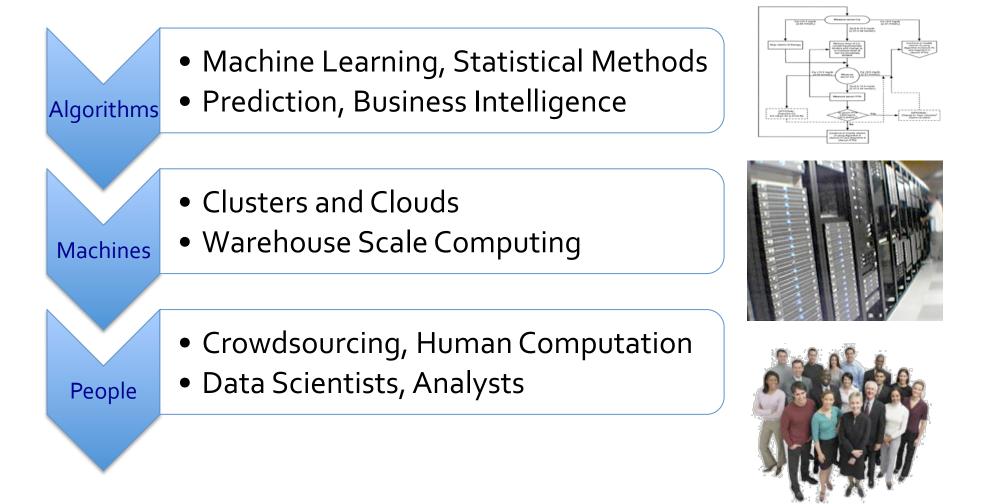
5) Big Data Software + X <HPC, People, IoT,...>

Trend I

INTEGRATED STACKS VS SILOS

AMPLab: A Public/Private Partnership

Launched 2011; ~90 Students, Postdocs, and Faculty Scheduled to run through 2016 National Science Foundation Expedition Award


Darpa XData; DoE/Lawrence Berkeley National Lab

Industrial Sponsors:

AMP: 3 Key Resources

Berkeley Data Analytics Stack

In House Applications – Genomics, IoT, Energy

Storage

MESOS Resource Virtualization

TACHYON

Apache Spark Meetups (Jan 2015)

Groups	Members	Interested	Cities	Countries
43	12,039	828	35	14

Apache Spark Meetups (Dec 2015)

2015: Typical Spark Coverage

November 4, 2015

Skip the Ph.D and Learn Spark, Data Science Salary Survey Says

Alex Woodie

Prospective data scientists can boost their salary more by learning Apache Spark and its tied-atthe-hip language Scala than obtaining a Ph.D., a recent data science survey by O'Reilly suggests.

Big Data Ecosystem Evolution

Giraph Pregel Drill Dremel Tez MapReduce Impala GraphLab Storm S4 . . . General batch Specialized systems (iterative, interactive and processing streaming apps)

AMPLab Unification Strategy

Don't specialize MapReduce – Generalize it!

Two additions to Hadoop MR:

I. General Task DAGs

2. Data Sharing

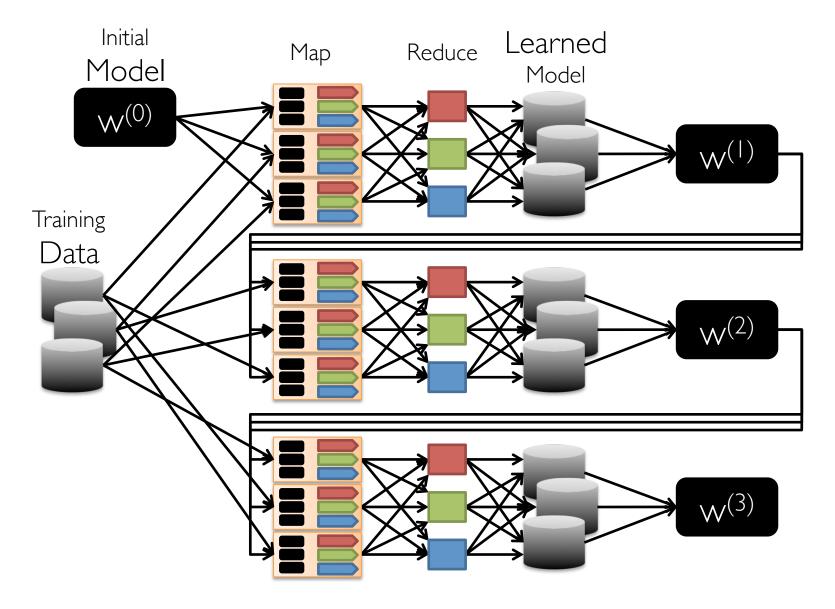
Productivity: Fewer Systems to Master

Less Data Movement

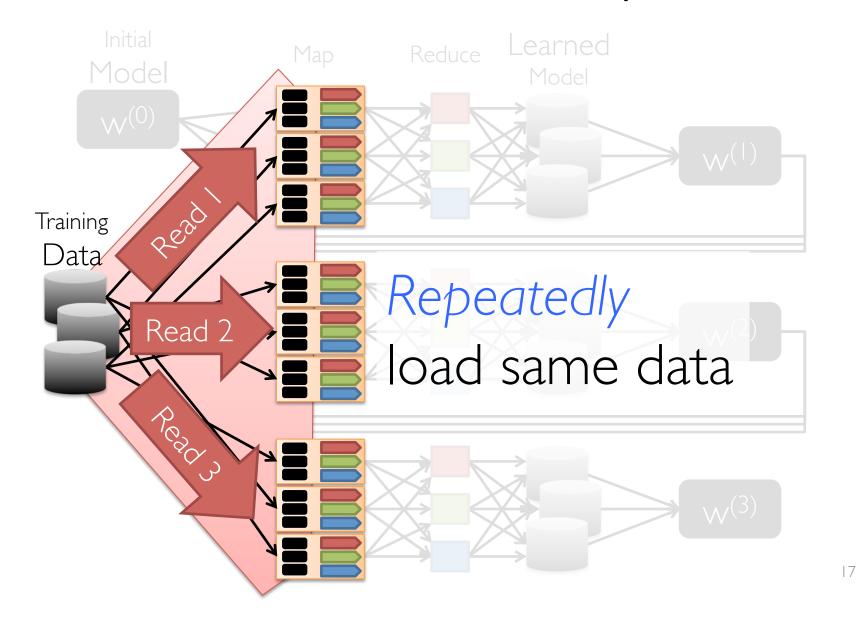
SparkSQI

Spark

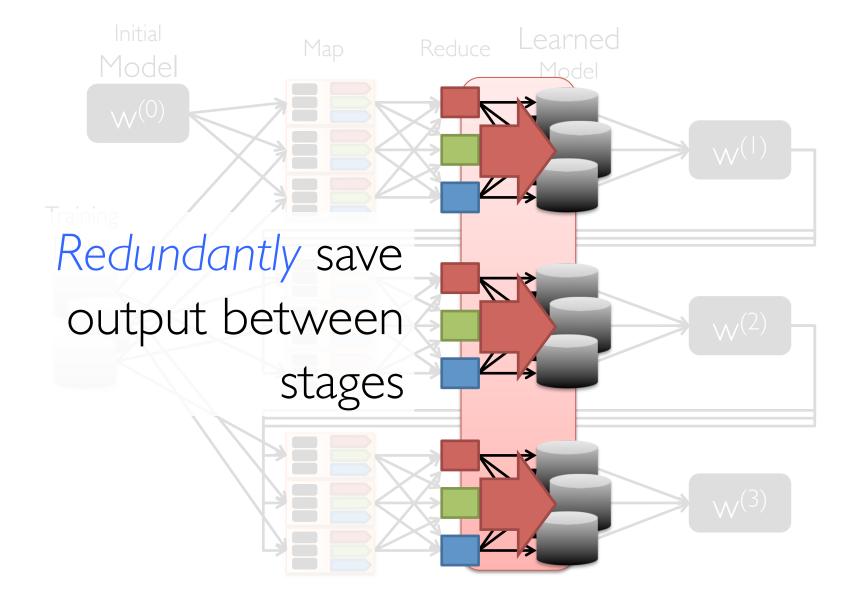
GraphX

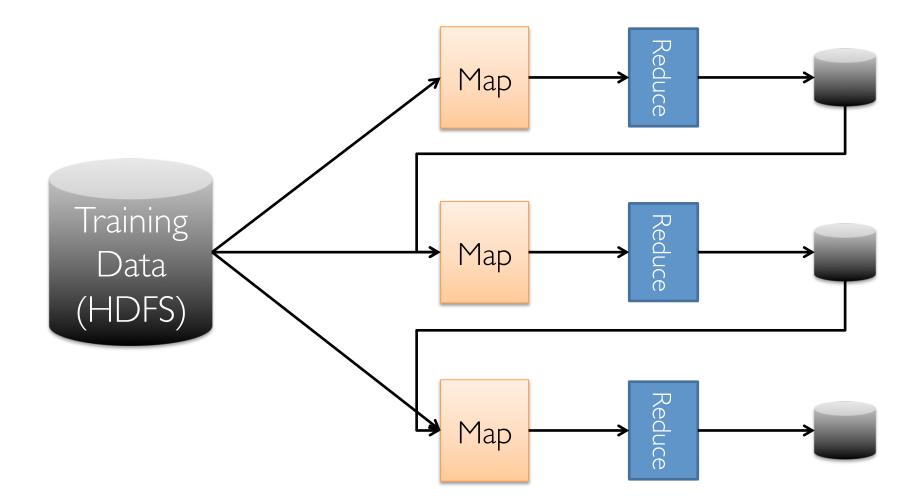

MLbase

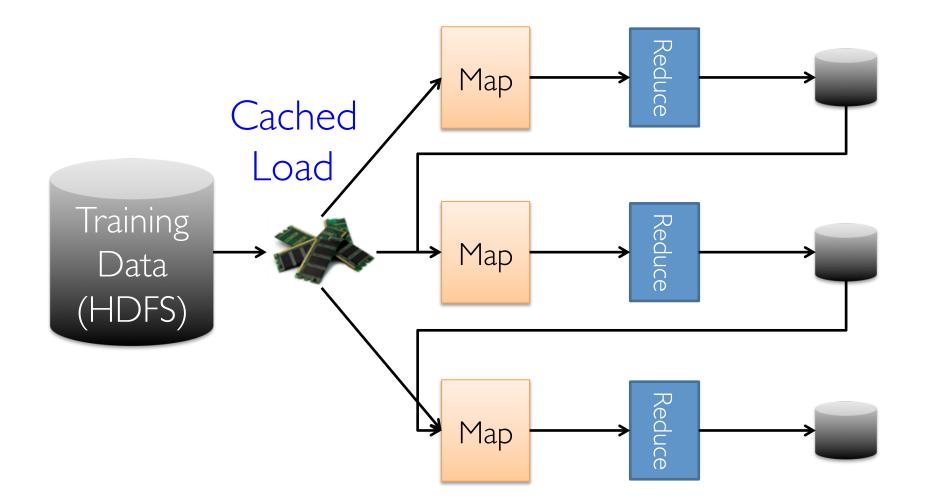
. . .

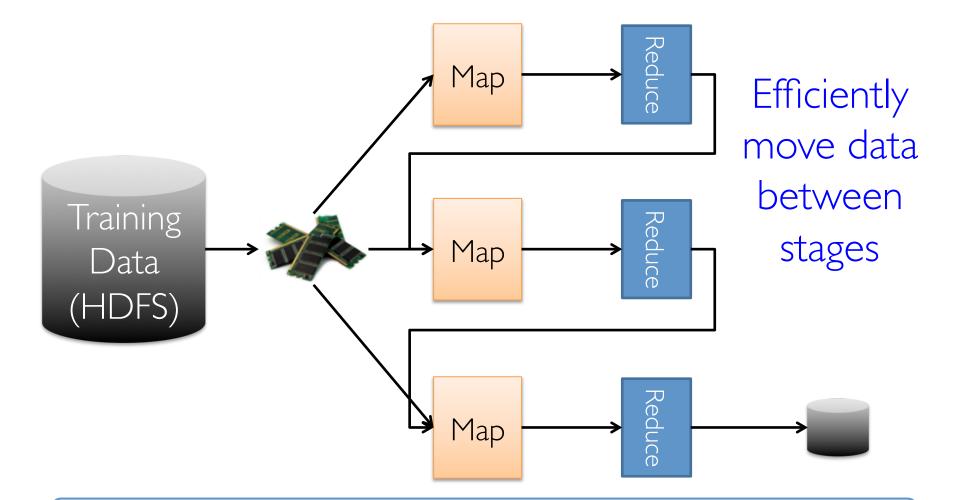

Streaming

M. Zaharia, M. Choudhury, M. Franklin, I. Stoica, S. Shenker, "Spark: Cluster Computing 15 with Working Sets, USENIX HotCloud, 2010.


Iteration in Map-Reduce


Cost of Iteration in Map-Reduce


Cost of Iteration in Map-Reduce


Dataflow View

Memory Opt. Dataflow

Memory Opt. Dataflow View

Spark:10-100× faster than Hadoop MapReduce

Resilient Distributed Datasets (RDDs)

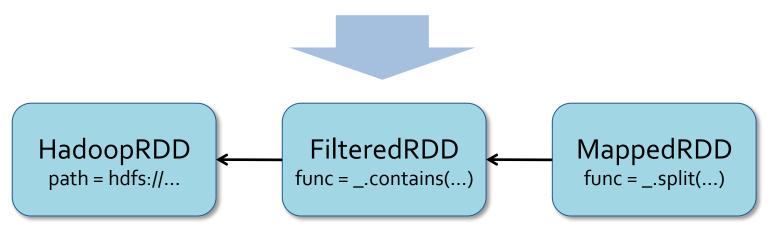
API: coarse-grained *transformations* (map, group-by, join, sort, filter, sample,...) on immutable collections

Resilient Distributed Datasets (RDDs)

- » Collections of objects that can be stored in memory or disk across a cluster
- » Built via parallel transformations (map, filter, ...)
- » Automatically rebuilt on failure
- Rich enough to capture many models: **» Data flow models**: MapReduce, Dryad, SQL, ... **» Specialized models**: Pregel, Hama, ...

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory cluster computing, NSDI 2012.

Abstraction: Dataflow Operators


map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapWith
join	cogroup	pipe
leftOuterJoin	cross	save
rightOuterJoin	zip	

Fault Tolerance with RDDs

RDDs track the series of transformations used to build them (their *lineage*)

» Log one operation to apply to many elements» No cost if nothing fails

Enables per-node recomputation of lost data

Spark SQL – Deeper Integration

Replaces "Shark" – Spark's implementation of Hive

- Hive dependencies were cumbersome
- Missed integration opportunities

Spark SQL has two main additions
I) Tighter Spark integration, including Data Frames
2) Catalyst Extensible Query Optimizer

First release May 2014; in production use

 e.g., large Internet co has deployed on 8000 nodes; >100PB with typical queries covering 10's of TB

R. Xin, J. Rosen, M. Zaharia, M. Franklin, S. Shenker, I. Stoica, "Shark: SQL and Rich Analytics at Scale, SIGMOD 2013.

M. Armbrust, R. Xin et al., "Spark SQL: Relational Data Processing in Spark", SIGMOD 2015.

SQL + ML + Streaming

```
// Load historical data as an RDD using Spark SQL
val trainingData = sql(
    "SELECT location, language FROM old_tweets")
```

```
// Train a K-means model using MLlib
val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)
```

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))

DataFrames

employees

.join(dept, employees("deptId") === dept("id")) .where(employees("gender") === "female") .groupBy(dept("id"), dept("name")) .agg(count("name"))

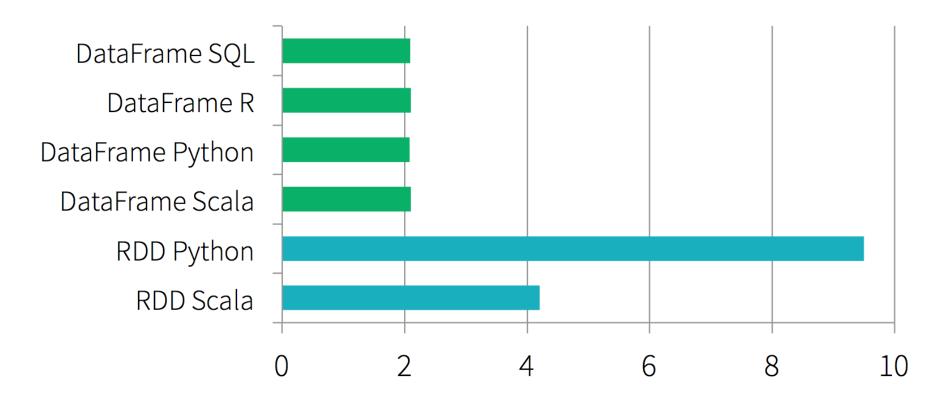
Some people think this is an improvement over SQL ©

Recently added: a binding for R dataframes

Catalyst Optimizer

Extensibility via Optimization Rules written in Scala

Code generation for inner-loops


Extension Points:

Data Sources: e.g., CSV, Avro, Parquet, JDBC, ...

via TableScan (all cols), PrunedScan (project),
 FilteredPrunedScan(push advisory selects and projects)
 CatalystScan (push advisory full Catalyst expression trees)

User Defined Types

An interesting thing about SparkSQL Performance

Time to Aggregate 10 million int pairs (secs)

```
JSON Type Inference
"text": "This is a tweet about #Spark",
"tags": ["#Spark"],
"loc": {"lat": 45.1, "long": 90}
                                   text STRING NOT NULL,
                                   tags ARRAY<STRING> NOT NULL,
"text": "This is another tweet",
                                   loc STRUCT<lat FLOAT NOT NULL.
"tags": [],
                                               long FLOAT NOT NULL>
"loc": {"lat": 39, "long": 88.5}
"text": "A #tweet without #location",
"tags": ["#tweet", "#location"]
}
```

Currently can also do Type Inference for Python RDDs; CSV and XML in progress

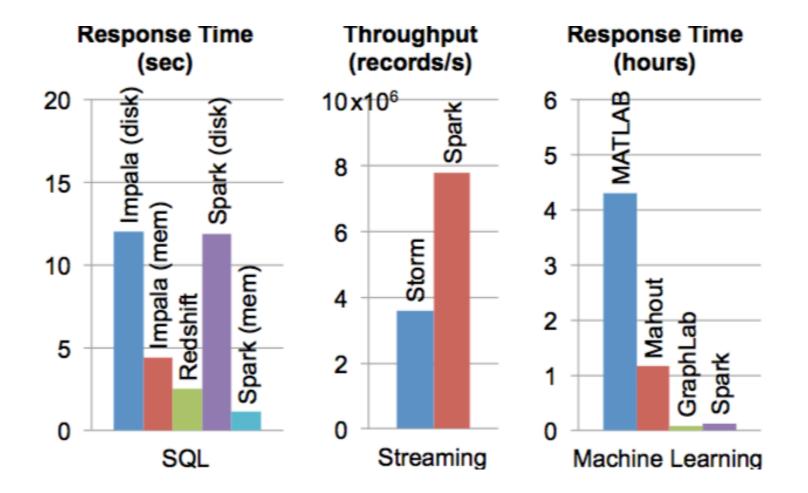
Query Federation made Easy?

A join of a MySQL Table and a JSON file using Spark SQL

CREATE TEMPORARY TABLE users USING jdbc OPTIONS(driver "mysql" url "jdbc:mysql://userDB/users")

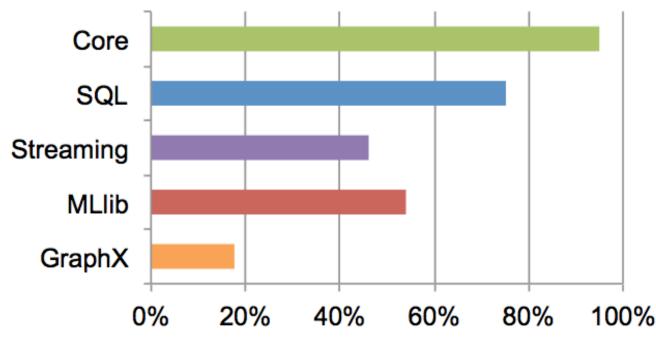
Don't Forget About Approximation

BDAS Uses Approximation in two main ways:


I) BlinkDB (Agarwal et al. EuroSys I3)

- Run queries on a sample of the data
- Returns answer and confidence interval
- Can adjust time vs confidence

2) Sample Clean (Wang et al. SIGMOD 14)


- Clean a sample of the data rather than whole data set
- Run query on sample (get error bars) OR
- Run query on dirty data and correct the answer

Performance vs. Specialized

Zaharia et al., "Spark: Building a Unified Engine for Big Data Processing", CACM 2016 to appear

Spark User Survey 7/2015 (One Size Fits Many)

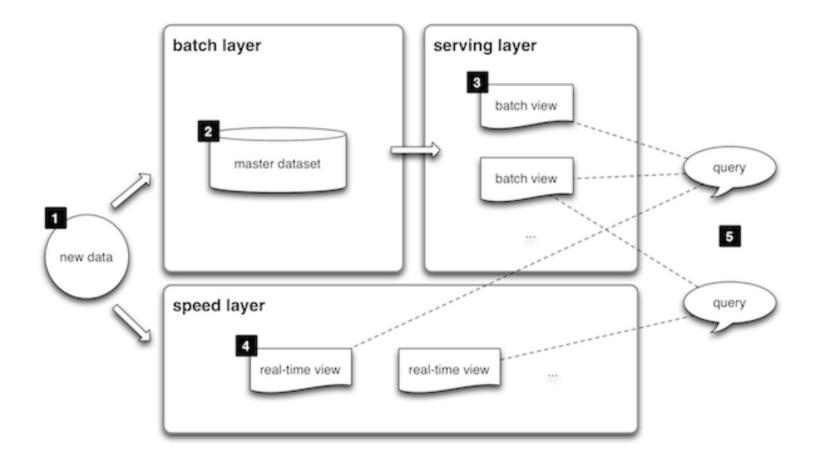
Fraction of Users

~1400 respondents; 88% Use at least 2 components; 60% at least 3; 27% at least 4; Source: Databricks

Trend II

"REALTIME" REDUX

Renewed Excitement Around Streaming


Stream Processing (esp. Open Source)

- » Spark Streaming
- » Samza
- » Storm
- » Flink Streaming
- » Google Millwheel and Cloud Dataflow
- » <YOUR FAVORITE SYSTEM HERE>

Message Transport

- **»** Kafka
- » Kenesis
- » Flume

Lambda Architecture: Real-Time + Batch

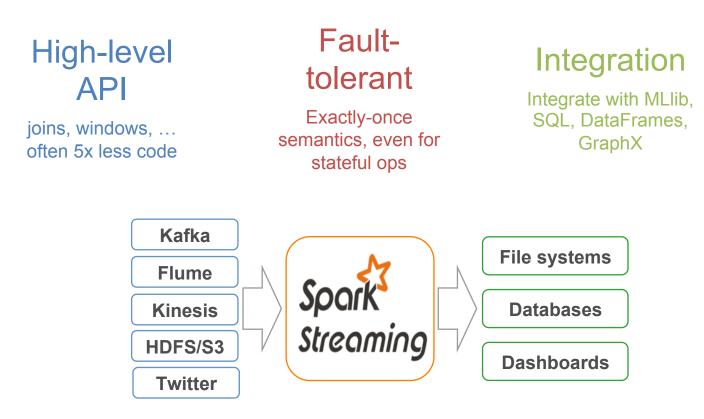
lambda-architecture.net 37

Lambda: How Unified Is It?

Have to write everything twice!

Have to fix everything (maybe) twice.

Subtle differences in semantics

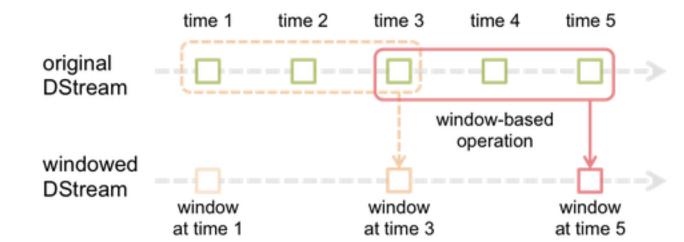

how much Duct Tape required?

What about Graphs, ML, SQL, etc.?

see e.g., Jay Kreps: <u>http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html</u> and Franklin et al., CIDR 2009.

Spark Streaming

Scalable, fault-tolerant stream processing system



Spark Streaming

Microbatch approach provides low latency

Additional operators provide windowed operations

M. Zaharia, et al, Discretized Streams: Fault-Tollerant Streaming Computation at Scale, SOSP 2013.

40

Batch/Streaming Unification

Batch and streaming codes virtually the same » Easy to develop and maintain consistency

// count words from a file (batch)
val file = sc.textFile("hdfs://.../pagecounts-*.gz")
val words = file.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()

// count words from a network stream, every 10s (streaming)
val ssc = new StreamingContext(args(0), "NetCount", Seconds(10), ..)
val lines = ssc.socketTextStream("loca host", 3456)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()

ssc.start(

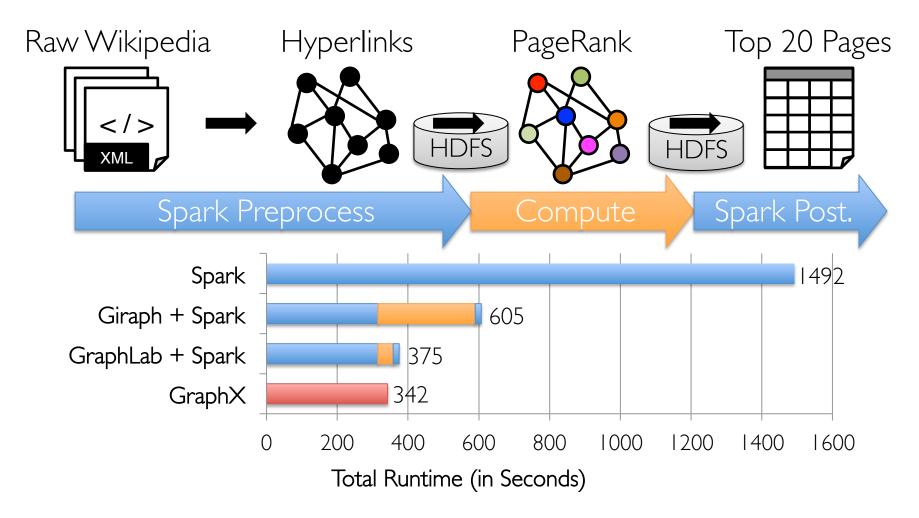
Spark Streaming - Comments

Mini-batch approach appears to be "low latency" enough for many applications.

Integration with the rest of the BDAS/Spark stack is a big deal for users

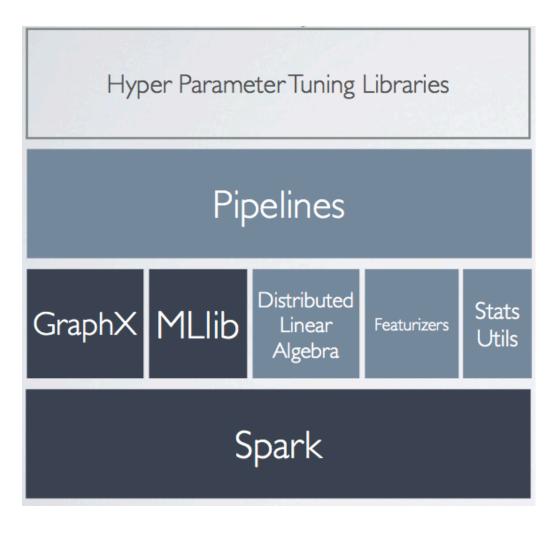
We're also adding a '**'timeseries**'' capability to BDAS (see AMPCamp 6 ampcamp.berkeley.edu)

• initially batch but streaming integration planned


Trend III

MACHINE LEARNING PIPELINES

Beyond ML Operators


- Data Analytics is a complex process
- Rare to simply run a single algorithm on an existing data set
- Emerging systems support more complex workflows:
 - Spark MLPipelines
 - Google TensorFlow
 - KeystoneML (BDAS)

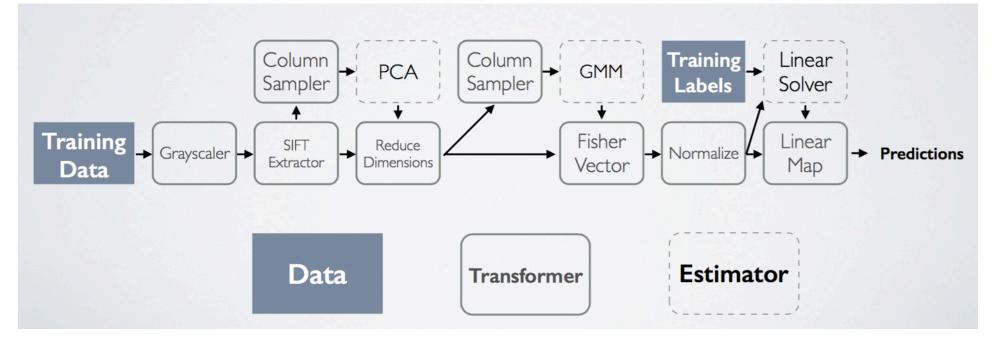
A Small Pipeline in GraphX

Need to measure End-to-End Performance

MLBase: Distributed ML Made Easy

DB Query Language Analogy: Specify **What** not **How**

MLBase chooses:

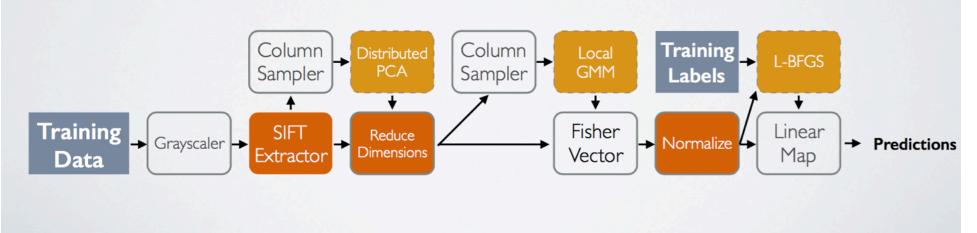

- Algorithms/Operators
- Ordering and Physical Placement
- Parameter and Hyperparameter Settings
- Featurization
 Leverages Spark for Speed
 and Scale

T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin, M. Jordan, "MLBase: A Distributed Machine Learning System", CIDR 2013.

KeystoneML

Software framework for describing complex *machine learning pipelines* built on Apache Spark.

Pipelines are specified using domain specific and general purpose *logical operators*.



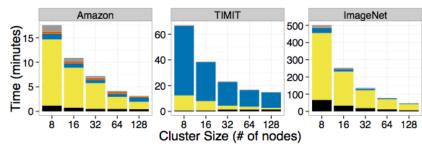
High-level API → Optimizations

Automated ML operator selection

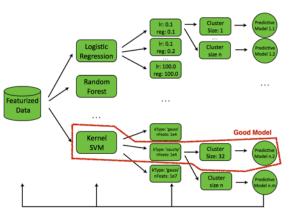
Auto-caching for iterative workloads

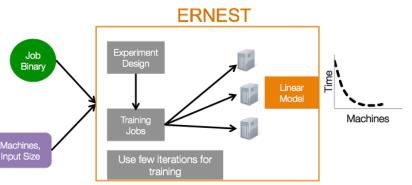
KeystoneML: Latest News

v0.3 to be released this week.


Scale-out performance on 10s of TBs of training features on 100s of machines. apps: Image Classification, Speech, Text.

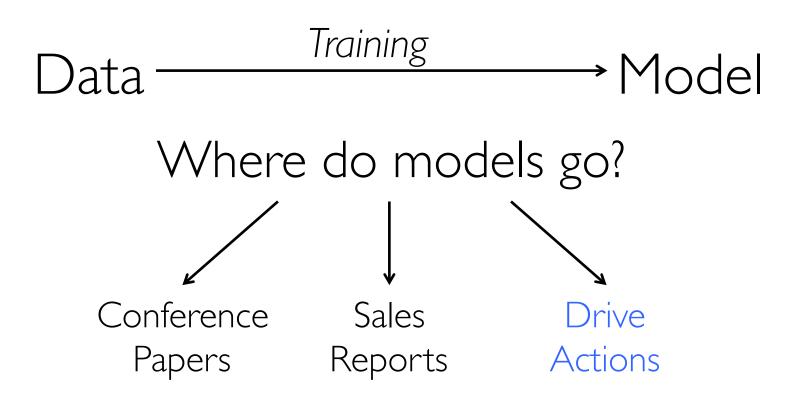
First versions of node-level and wholepipeline optimizations.


Many new high-speed, scalable operators


Coming soon:

- » Principled, scalable hyperparameter tuning. (TuPAQ - SoCC 2015)
- »Advanced cluster sizing/job placement algorithms. (Ernest - NSDI 2016)

Stage Loading Train Data Featurization Model Solve



Trend IV

MODEL AND DATA SERVING

Introducing Velox: Model Serving

Driving Actions

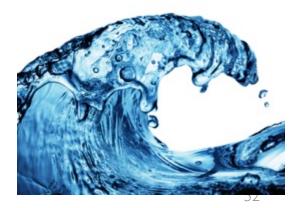
Suggesting Items at Checkout

Fraud Detection

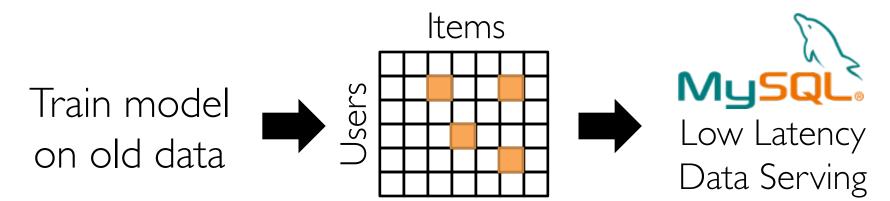
Cognitive

Assistance

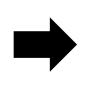
Internet of Things


Low-Latency

Personalized

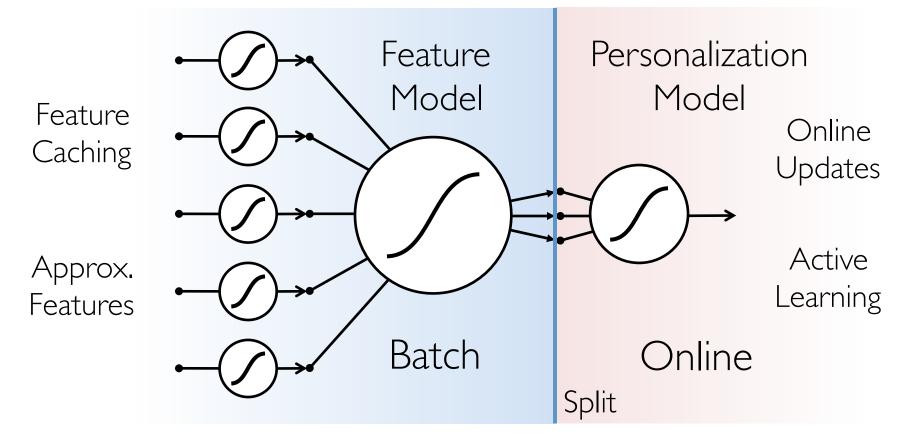


Rapidly Changing


Current Solutions & Limitations

Materialize Everything: Pre-compute all Predictions

Specialized Service: Build a Prediction Service


Train model on old data

High-Latency One-off Prediction Service

Velox Model Serving System

Decompose *personalized* predictive models:

Order-of-magnitude reductions in prediction latencies.

Hybrid Learning

Update feature functions offline using batch solvers

- Leverage high-throughput systems (Apache Spark)
- Exploit slow change in population statistics

 $f(x;\theta)^T w_u$

Update the user weights online:

- Simple to train + more robust model
- Address rapidly changing user statistics

Serving Data

- Intelligent services also require serving data (in addition to predictions).
- KV Stores such as Cassandra, HBase, etc. provide this functionality.
- Traditional problems of merging analytics and serving (or OLTP and OLAP) remain.

BIG DATA FOR IOT, HIGH PERFORMANCE COMPUTING AND MORE...

Trend V

High-Performance Computing

HPC used to have a monopoly on "big iron"

Completely different scale/pace of innovation

White House "National Strategic Computing Initiative" Includes combining HPC and Big Data

Scientific Computing Meets Big Data Technology: An Astronomy Use Case

Zhao Zhang^{*,°} Kyle Barbary^{°,†} Frank Austin Nothaft^{*,‡} Evan Sparks^{*} Oliver Zahn[†] Michael J. Franklin^{*,°} David A. Patterson^{*,‡} Saul Perlmutter^{°,†} * AMPLab, University of California, Berkeley ° Berkeley Institute for Data Science, University of California, Berkeley † Berkeley Center for Cosmological Physics, University of California, Berkeley [‡] ASPIRE Lab, University of California, Berkeley

IEEE Conf. on Big Data 2015

AMPLab Genomics

•SNAP (Scalable Nucleotide Alignment): alignment in hours vs. days

•Why Speed Matters – A real-world use case

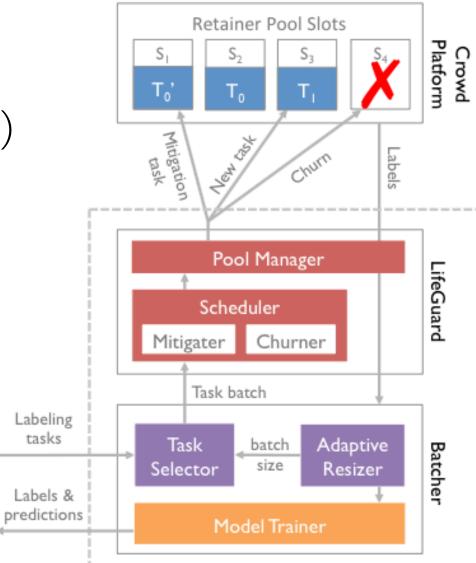

M. Wilson, ..., and C. Chiu, "Actionable Diagnosis of Neruoleptospirosis by Next-Generation Sequencing", June 4, 2014, *New England Journal of Medicine,*

Table 1: Summary Performance on NA12878								Application Transformations
Tool	EC2	BQSR	IR	$\mathbf{D}\mathbf{M}$	\mathbf{Sort}	\mathbf{FS}	Total	_
[14]	1†	1283m	658m					Presentation Enriched Models
[32]	1†			509m	203m	54m41	2075m1	Ennened Models
[50]	1†			44m50	83m	6m11		Evidence Access
[51]	1†			160m	562m		\$214.39	MapReduce/DBMS
ADAM	1†	1602m	$366 \mathrm{m}$	143m	108m	2m17	2221 m 17	Mapheddee/DDM6
		$1/1.25 \times$	1.7 imes	$1/3.8 \times$	$1/1.3 \times$	2.7 imes	$1/1.07 \times$	Schema
ADAM	32*	74m	64m	34m56	39m23	0 m 43	223m2	Data Models
		$17 \times$	$10 \times$	$1.2 \times$	2.1 imes	$8.6 \times$	$9.3 \times$	
ADAM	64*	41 m 52	35m39	21m35	18m56	0m49	118m51	Materialized Data
		$30 \times$	$18 \times$	$2.0 \times$	$4.3 \times$	$7.5 \times$	$17\times$	Columnar Storage
ADAM	$128 \star$	25m59	20m27	15m27	10m31	1m20	73m44	
	\sim	$49 \times$	$32 \times$	$2.9 \times$	$7.9 \times$	$4.3 \times$	$28 \times$	Data Distribution
				mannia	0000		\$78.92	Parallel FS
C Notheft at al "Dethinking Data Intensive								= Physical Storage
Science Using Scalable Analytics Systems"							Attached Storage	
ACM SIGMOD Conf., June 2015. * r3.2xlarge \$0.70 8 proc, 61G RAM, 1 SDD								-

Integrating the "P" in AMP

Optimization for human-in-the-loop analtyics (AMPCrowd)

- SampleClean
- Straggler Mitigation
- Pool Maintenance
- Active Learning

BDS Meets Internet of Things

Streaming and Real Time

What to keep, what to drop

Edge Processing

Privacy

Partitions, Fault Tolerance, Eventual Consistency, Order-dependence

Big Data Software Moves Fast

We looked at the following trends:

- I) Integrated Stacks vs Silos
- 2) "Real-Time" Redux
- 3) Machine Learning and Advanced Analytics
- 4) Serving Data and Models

5) Big Data Software + X <HPC, People, IoT,...>

To find out more or get involved:

amplab.berkeley.edu

franklin@berkeley.edu

Thanks to NSF CISE Expeditions in Computing, DARPA XData, Founding Sponsors: Amazon Web Services, Google, IBM, and SAP, the Thomas and Stacy Siebel Foundation, all our industrial sponsors and partners, and all the members of the AMPLab Team.