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Entities: an invaluable asset 
“Entities” is what a large part of our knowledge is about: 

Persons 

Organizations 

Projects 

Locations 

Products 
Events 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

capital of UK, host city of the IV Olympic Games, host city 
of the XIV Olympic Games, future host of the XXX 
Olympic Games, city of the Westminster Abbey, city of 
the London Eye, the city described by Charles Dickens in 
his novels, … 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

capital of UK, host city of the IV Olympic Games, host city 
of the XIV Olympic Games, future host of the XXX 
Olympic Games, city of the Westminster Abbey, city of 
the London Eye, the city described by Charles Dickens in 
his novels, … 

http://sws.geonames.org/2643743/ 
http://en.wikipedia.org/wiki/London 
http://dbpedia.org/resource/Category:London 
… 

Papadakis & Palpanas, ParisBD 2017 



◦ London, KY 

◦ London, Laurel, KY 

◦ London, OH 

◦ London, Madison, OH 

◦ London, AR 

◦ London, Pope, AR 

◦ London, TX 

◦ London, Kimble, TX 

◦ London, MO 

◦ London, MO 

◦ London, London, MI 

◦ London, London, Monroe, MI 

◦ London, Uninc Conecuh County, AL 

◦ London, Uninc Conecuh County, Conecuh, AL 

◦ London, Uninc Shelby County, IN 

◦ London, Uninc Shelby County, Shelby, IN 

◦ London, Deerfield, WI 

◦ London, Deerfield, Dane, WI 

◦ London, Uninc Freeborn County, MN 

◦ ... 

How many “entities” have the same name? 

… or … 
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◦ London, KY 

◦ London, Laurel, KY 

◦ London, OH 

◦ London, Madison, OH 

◦ London, AR 

◦ London, Pope, AR 

◦ London, TX 

◦ London, Kimble, TX 

◦ London, MO 

◦ London, MO 

◦ London, London, MI 

◦ London, London, Monroe, MI 

◦ London, Uninc Conecuh County, AL 

◦ London, Uninc Conecuh County, Conecuh, AL 

◦ London, Uninc Shelby County, IN 

◦ London, Uninc Shelby County, Shelby, IN 

◦ London, Deerfield, WI 

◦ London, Deerfield, Dane, WI 

◦ London, Uninc Freeborn County, MN 

◦ ... 

◦ London, Jack 
2612 Almes Dr 
Montgomery, AL 
(334) 272-7005 
 

◦ London, Jack R 
2511 Winchester Rd 
Montgomery, AL 36106-3327 
(334) 272-7005 
 

◦ London, Jack 
1222 Whitetail Trl 
Van Buren, AR 72956-7368 
(479) 474-4136 
 

◦ London, Jack 
7400 Vista Del Mar Ave 
La Jolla, CA 92037-4954 
(858) 456-1850 
 

◦ ... 

How many “entities” have the same name? 

… or … 
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Content Providers 

How many content types / applications provide  

valuable information about each of these “entities”? 

News about London 
reviews on hotels in London 

Pictures and tags about London 

Videos and tags for London 

Social networks in London 

Wiki pages about the London 
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Preliminaries on Entity Resolution 

Entity Resolution [Christen, TKDE 2011]: 
 identifies and aggregates the different entity profiles/records 
that actually describe the same real-world object. 

 

Useful because: 

• improves data quality and integrity  

• fosters re-use of existing data sources 
 

Application areas: 

 Linked Data, Social Networks, census data,  

 price comparison portals, fact-checking, … 
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Types of Entity Resolution 

The input of ER consists of entity collections that can be of two  

types [Christen, TKDE 2011]: 

• clean, which are duplicate-free 

  e.g., DBLP, ACM Digital Library, Wikipedia, Freebase  

• dirty, which contain duplicate entity profiles in themselves 

 e.g., Google Scholar, CiteseerX 
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Types of Entity Resolution 

The input of ER consists of entity collections that can be of two  

types [Christen, TKDE 2011]: 

• clean, which are duplicate-free 

  e.g., DBLP, ACM Digital Library, Wikipedia, Freebase  

• dirty, which contain duplicate entity profiles in themselves 

 e.g., Google Scholar, CiteseerX 

 

Based on the quality of input, we distinguish ER into 3 sub-tasks: 

• Clean-Clean ER (a.k.a. Record Linkage in databases) 
 

• Dirty-Clean ER  
 

• Dirty-Dirty ER 

 

 

Equivalent to Dirty ER  
(a.k.a. Deduplication in databases) 
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Computational cost 

ER is an inherently quadratic problem (i.e., O(n2)): 

every entity has to be compared with all others  

  

ER does not scale well to large entity collections (e.g., Web Data). 
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Computational cost 

ER is an inherently quadratic problem (i.e., O(n2)): 

every entity has to be compared with all others  

  

ER does not scale well to large entity collections (e.g., Web Data) 

 

Solution: Blocking 
• group similar entities into blocks 

• execute comparisons only inside each block 

• complexity is now quadratic to the size of the block (much smaller 
than dataset size!) 
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Computational cost 

|E| entities 

|E| entities 

Brute-force 
approach 

Duplicate 
Pairs 

Blocking 
Input:  
Entity Collection E 
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Example of Computational cost 

DBPedia 3.0rc ↔ DBPedia 3.4 
   1.2 million entities ↔ 2.2 million entities 

 
Entity matching: Jaccard similarity of all tokens 
Cost per comparison:  0.045 milliseconds (average of 0.1 billion comparisons) 
 

Brute-force approach 
Comparisons: 2.58 ∙ 1012 

Recall: 100% 
Running time: 1,344 days → 3.7 years 
 

Optimized Token Blocking Workflow 
Overhead time: 4 hours 
Comparisons: 8.95 ∙ 106 
Recall: 92% 
Total Running time: 5 hours 
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Outline 

1. Introduction to Blocking  

2. Blocking Methods for Relational Data 

3. Blocking Methods for Web Data 

4. Block Processing Techniques  

5. Meta-blocking 

6. Challenges 

7. JedAI Toolkit 

8. Conclusions 
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 Part 1: 

 Introduction to Blocking 



Fundamental Assumptions 

1. Every entity profile consists of a uniquely identified set of 
name-value pairs. 
 

2. Every entity profile corresponds to a single real-world 
object. 
 

3. Two matching profiles are detected as long as they co-
occur in at least one block → entity matching is an 
orthogonal problem. 

 

4. Focus on string values. 
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General Principles 

1. Represent each entity by one or more blocking keys. 

2. Place into blocks all entities having the same or similar 
blocking key. 

 

Measures for assessing block quality [Christen, TKDE 2011]: 

– Pairs Completeness:  𝑃𝐶 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
   (optimistic recall) 

  

– Pairs Quality: 𝑃𝑄 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
  (pessimistic precision) 

 

Trade-off! 
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Problem Definition 

Given one dirty (Dirty ER), or two clean (Clean-Clean ER)  

entity collections, cluster their profiles into blocks  

and process them so that both Pairs Completeness (PC) and 
Pairs Quality (PQ) are maximized. 

 
 

caution:   

• Emphasis on Pairs Completeness (PC).  
– if two entities are matching then they should coincide at some block 
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Blocking Techniques Taxonomy 

1. Performance-wise 
• Exact methods 

• Approximate methods 

2. Functionality-wise 
• Supervised methods 

• Unsupervised methods 

3. Blocks-wise 
• Disjoint blocks 

• Overlapping blocks 

– Redundancy-neutral 

– Redundancy-positive 

– Redundancy-negative 

4. Signature-wise 
• Schema-based 

• Schema-agnostic 
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Block 
Building 

Comparison 
Cleaning 

E B Block 
Cleaning 

Lazy  

blocking 

methods 

Block-

refinement 

methods 

Comparison-

refinement 

methods 

Proactive blocking methods 

Blocking Workflow [Papadakis et. al., VLDB 2016] 
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Blocks- and Signature-wise Categorization 
of Block Building Methods 
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Disjoint 
Blocks 

Overlapping Blocks 

Redundancy- 
negative 

Redundancy- 
neutral 

Redundancy- 
positive 

Schema- 
based 

Standard 
Blocking 

(Extended) 
Canopy 

Clustering 

1. (Extended) 
Sorted 
Neighborhood 

2. MFIBlocks 

1. (Extended) Q-grams 
Blocking 
2. (Extended) Suffix Arrays 

Schema- 
agnostic 

- - - 

1. Token Blocking 
2. Agnostic Clustering 
3. TYPiMatch 
4. URI Semantics Blocking 
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 Part 2: 

 Block Building for Relational Data 



General Principles 

 

Mostly schema-based techniques. 

Rely on two assumptions: 

1. A-priori known schema → no noise in attribute names. 

2. For each attribute name we know some metadata: 

– level of noise (e.g., spelling mistakes, false or missing 
values) 

– distinctiveness of values 
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Standard Blocking 

Sorted  
Neighborhood 

Extended Sorted  
Neighborhood 

Q-grams  
Blocking 

Extended 
Q-grams  
Blocking 

Suffix 
Arrays 

Canopy 
Clustering 

Extended 
Canopy 

Clustering 

Overview of Schema-based Methods 
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Standard Blocking 
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Neighborhood 

Extended Sorted  
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Blocking 
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Standard Blocking [Fellegi et. al., JASS 1969] 

Earliest, simplest form of blocking.  

 

Algorithm: 

1. Select the most appropriate attribute name(s) w.r.t. noise 
and distinctiveness. 

2. Transform the corresponding value(s) into a Blocking Key (BK) 

3. For each BK, create one block that contains all entities having 
this BK in their transformation. 

 

 

Works as a hash function! → Blocks on the equality of BKs 

 

Papadakis & Palpanas, ParisBD 2017 



Example of Standard Blocking 
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Blocks on zip_code: 



Summary of Blocking for Databases [Christen, TKDE2011] 

1. They typically employ redundancy to ensure higher recall 
in the context of noise at the cost of lower precision (more 
comparisons). Still, recall remains low for many datasets. 

 

2. Several parameters to be configured  

  E.g., Canopy Clustering has the following parameters: 

I. String matching method 

II. Threshold t1 

III. Threshold t2 

 

3. Schema-dependent → manual definition of BKs 
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Improving Blocking for Databases [Papadakis et. al., VLDB 2015] 

Schema-agnostic blocking keys 

• Use every token as a key 

• Applies to all schema-based blocking methods 

• Simplifies configuration, unsupervised approach 

 

Performance evaluation 

• For lazy blocking methods →  
very high, robust recall at the cost of more comparisons 

• For proactive blocking methods → 
relative recall gets higher with more comparisons,  
absolute recall depends on block constraints 
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 Part 3: 

 Block Building for Web Data 

 



 Characteristics of Web Data 

Voluminous, (semi-)structured datasets.  

• DBPedia 2014: 3 billion triples and 38 million entities 

• BTC09:  1.15 billion triples, 182 million entities. 

  

Users are free to add attribute values and/or attribute names  

 unprecedented levels of schema heterogeneity.  

• DBPedia 3.4: 50,000 attribute names 

• Google Base: 100,000 schemata for 10,000 entity types 

• BTC09:  136,000 attribute names 

 

Several datasets produced by automatic information extraction 
techniques  

 noise, tag-style values. 
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Example of Web Data 

Noise 

Attribute 
Heterogeneity 

Loose Schema 
Binding 

Split 
values 
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Token Blocking [Papadakis et al., WSDM2011] 

Functionality: 

1. given an entity profile, extract all tokens that are contained in 
its attribute values. 

2. create one block for every distinct token → each block 
contains all entities with the corresponding token*. 

 

Attribute-agnostic functionality: 

• completely ignores all attribute names, but considers all 
attribute values 

• efficient implementation with the help of inverted indices 

• parameter-free! 
 

*Each block should contain at least two entities. 
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Token Blocking Example 
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Attribute-Clustering Blocking 
[Papadakis et. al., TKDE 2013] 

Goal: 

group attribute names into clusters s.t. we can apply Token Blocking 
independently inside each cluster, without affecting effectiveness 
→ smaller blocks, higher efficiency. 
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Building address 

headquarters 
hdq 

Person address 

address 
residence 



Attribute-Clustering Blocking 
Algorithm 

• Create a graph, where every node represents an attribute name 
and its attribute values 

• For each attribute name/node ni 

– Find the most similar node nj 

– If sim(ni,nj) > 0, add an edge <ni,nj> 
• Extract connected components 
• Put all singleton nodes in a “glue” cluster 
 

 

Parameters 

1. Representation model 

– Character n-grams, Character n-gram graphs, Tokens 

2. Similarity Metric 

– Jaccard, Graph Value Similarity, TF-IDF 
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Attribute-Clustering vs  
Schema Matching 

 

Similar to Schema Matching, …but fundamentally different: 

 

1. Associated attribute names do not have to be semantically 
equivalent. They only have to produce good blocks 

 

2. All singleton attribute names are associated with each other 

 

3. Unlike Schema Matching, it scales to the very high levels of 
heterogeneity of Web Data 
– because of the above simplifying assumptions 
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Summary of Blocking for Web Data 
 

High Recall in the context of noisy entity profiles and extreme 
schema heterogeneity thanks to: 

1.  redundancy that reduces the likelihood of missed matches. 

2.  attribute-agnostic functionality that requires no schema 
semantics. 

 

Low Precision because: 

• the blocks are overlapping → redundant comparisons 

• high number of comparisons between irrelevant entities → 
superfluous comparisons 
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Token Blocking Example 
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Superfluous  
Comparison 

Redundant  
Comparison 
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 Part 4: 

 Block Processing Techniques 



Outline 

1. Introduction to Blocking  

2. Blocking Methods for Relational Data 

3. Blocking Methods for Web Data 

4. Block Processing Techniques  
– Block Purging 

– Block Filtering 

– Block Clustering 

– Comparison Propagation 

– Iterative Blocking 
5. Meta-blocking 

6. Challenges 

7. ER framework 
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General Principles 

Goals: 

1. eliminate all redundant comparisons 

2. avoid most superfluous comparisons 

without affecting matching comparisons (i.e., PC). 

 

Depending on the granularity of their functionality, they are 
distinguished into: 

1. Block-refinement 

2. Comparison-refinement 

• Iterative Methods 
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Block Purging 

Exploits power-law distribution of block sizes. 

 

Targets oversized blocks (i.e., many comparisons, no duplicates) 

 
 

Discards them by setting an upper limit on: 

•   the size of each block [Papadakis et al., WSDM 2011],  

•  the cardinality of each block [Papadakis et al., WSDM 2012] 

 

Core method: 

• Low computational cost. 

• Low impact on effectiveness. 

• Boosts efficiency to a large extent. 
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Block Filtering [Papadakis et. al, EDBT 2016] 

Main ideas:  

• each block has a different importance for every entity it 
contains.  

• Larger blocks are less likely to contain unique duplicates 
and, thus, are less important. 

 

Algorithm  

• sort blocks in ascending cardinality 

• build Entity Index 

• retain every entity in r% of its smallest blocks 

• reconstruct blocks 
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Comparison Propagation [Papadakis et al., JCDL 2011]  

• Eliminate all redundant comparisons at no cost in recall. 

• Naïve approach does not scale. 

• Functionality: 

1. Build Entity Index 

2. Least Common Block Index condition. 
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 Part 5: 

 Meta-blocking 



Motivation 

 
 

DBPedia 3.0rc ↔ DBPedia 3.4 

 1.2 million entities ↔ 2.2 million entities 
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Motivation 

 
 

DBPedia 3.0rc ↔ DBPedia 3.4 

 1.2 million entities ↔ 2.2 million entities 
 

Brute-force approach 

Comparisons: 2.58 ∙ 1012 

Recall: 100% 

Running time: 1,344 days → 3.7 years 
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Motivation 

 
 

DBPedia 3.0rc ↔ DBPedia 3.4 

 1.2 million entities ↔ 2.2 million entities 
 

Brute-force approach 

Comparisons: 2.58 ∙ 1012 

Recall: 100% 

Running time: 1,344 days → 3.7 years 
 

Token Blocking + Block Filtering + Comparison Propagation  

Overhead time: <30 mins 

Comparisons: 3.5 ∙ 1010 

Recall: 99% 

Total Running time: 19 days  
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Motivation 

 
 

DBPedia 3.0rc ↔ DBPedia 3.4 

 1.2 million entities ↔ 2.2 million entities 
 

Brute-force approach 

Comparisons: 2.58 ∙ 1012 

Recall: 100% 

Running time: 1,344 days → 3.7 years 
 

Token Blocking + Block Filtering + Comparison Propagation  

Overhead time: <30 mins 

Comparisons: 3.5 ∙ 1010 

Recall: 99% 

Total Running time: 19 days  
  

Token Blocking + Block Filtering + ?? 

 Papadakis & Palpanas, ParisBD 2017 

Block 
Building 

Comparison 
Cleaning 

E B Block 
Cleaning 



Meta-blocking [Papadakis et. al., TKDE 2014] 

Goal: 

restructure a redundancy-positive block collection into a new 
one that contains substantially lower number of redundant 
and superfluous comparisons, while maintaining the original 
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) → 
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Meta-blocking [Papadakis et. al., TKDE 2014] 

Goal: 

restructure a redundancy-positive block collection into a new 
one that contains substantially lower number of redundant 
and superfluous comparisons, while maintaining the original 
number of matching ones (ΔPC ≈ 0, ΔPQ >> 1) → 

 

Main idea: 

common blocks provide valuable evidence for the similarity of 
entities  

→ the more blocks two entities share, the more similar and 
the more likely they are to be matching 
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Outline of Meta-blocking 

n1 n3 

n2 n4 

n1 n3 

n2 n4 

n1 n3 

n2 n4 

3 

3 

2 2 
2 

1 
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Edge Weighting 

Five generic, attribute-agnostic weighting schemes that rely on 
the following evidence: 

• the number of blocks shared by two entities 

• the size of the common blocks 

• the number of blocks or comparisons involving each entity. 

 

Computational Cost: 

• In theory, equal to executing all pair-wise comparisons in the 
given block collection. 

• In practice, significantly lower because it does not employ 
string similarity metrics.  
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Motivation 
 
 

DBPedia 3.0rc ↔ DBPedia 3.4 
Brute-force approach 

Comparisons: 2.58 ∙ 1012 

Recall: 100% 
Running time: 1,344 days → 3.7 years 
 

Token Blocking + Block Filtering + Comparison Propagation  
Overhead time: <30 mins 
Comparisons: 3.5 ∙ 1010 
Recall: 99% 
Total Running time: 19 days  
  

Token Blocking + Block Filtering + Meta-blocking 
Overhead time: 4 hours 
Comparisons: 8.95 ∙ 106 
Recall: 92% 
Total Running time: 5 hours 
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• considered 5 lazy and 7 proactive blocking methods 
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Comparative Analysis of Approximate 
Blocking Techniques [Papadakis et. al., VLDB 2016] 



Experimental Analysis Setup 

 

• Block Cleaning methods:  

1. Block Purging 

2. Block Filtering 

 

• Comparison Cleaning methods:  

1. Comparison Propagation 

2. Iterative Blocking 

3. Meta-blocking 
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Experimental Analysis Setup 

• Exhaustive parameter tuning to identify two 
configurations for each method: 
1. Best configuration per dataset → maximizes  

𝒂 𝑩, 𝑬 = 𝑹𝑹 𝑩, 𝑬 ∙ 𝑷𝑪(𝑩, 𝑬) 

2. Default configuration → highest average 𝒂 across all 
datasets 

 

• Extensive experiments measuring effectiveness and 
time efficiency over 5 real datasets (up to 3.3M 
entities). 

 

• Scalability analysis over 7 synthetic datasets (up to 2M 
entities). 
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Effectiveness of Lazy Methods on DBPedia 
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Effectiveness of Lazy Methods on DBPedia 
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Token-blocking and  
Meta-blocking 



Effectiveness of Proactive methods on DBPedia 
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Effectiveness of Proactive methods on DBPedia 
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Sufix-arrays and  
Meta-blocking 
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Automatic Configuration 

Facts: 

• Several parameters in every blocking workflow  

– Both for lazy and proactive methods 

• Blocking performance sensitive to internal configuration 

– Experimentally verified in [Papadakis et. al., VLDB 2016] 

• Manual fine-tuning required 

 

Open Research Directions: 

• Plug-and-play blocking 

• Data-driven configuration 
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Progressive Blocking 

Facts: 

• Progressive, or Pay-as-you-go ER comes is useful 
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much earlier 
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Progressive Blocking 

Facts: 

• Progressive, or Pay-as-you-go ER comes is useful 

 get most of the benefit  
much earlier 

may require some 
pre-processing 
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Privacy Preserving Blocking 

Facts: 

• several applications ask for privacy-preserving ER 

• lots of interest in this area [Christen, PADM 2006][Karakasidis et 

al., 2012][Ziad et al, BTW 2015] 

  

Open Research Directions: 

• What is the role of blocking workflow techniques? 

– block building, block filtering, comparison cleaning 

• How can existing blocking techniques be adjusted? 

• Novel blocking methods for this context 
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JedAI:  
The Force behind Entity Resolution 

George Papadakis Leonidas Tsekouras Emmanouil Thanos 

George Giannakopoulos Themis Palpanas Manolis Koubarakis 



What is the JedAI Toolkit? 

JedAI can be used in three ways: 

1. As an open source library that implements 
numerous state-of-the-art methods for all steps 
of an established end-to-end ER workflow. 

2. As a desktop application for ER with an intuitive 
Graphical User Interface that is suitable for both 
expert and lay users. 

3. As a workbench for comparing all performance 
aspects of various (configurations of) end-to-end 
ER workflows. 
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How is JedAI Toolkit built? 

• Modular architecture: 
one module per 
workflow step. 

 

• Extensible architecture 
(e.g., ontology 
matching) 

??? 
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Where can I find JedAI Toolkit? 

• Project website: http://jedai.scify.org . 

 

• Github repository of JedAI Library:  
– https://github.com/scify/JedAIToolkit . 

• Github repository of JedAI Desktop Application and 
Workbench:  
– https://github.com/scify/jedai-ui . 

– All code is well documented. 

 

• Several datasets are available for testing at 
https://github.com/scify/JedAIToolkit . 
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 Conclusions 



Conclusions – Block Building 

• Traditional proactive blocking methods only 
suitable for relational data 

– background schema knowledge is available for their 
configuration 

 

• Recent lazy blocking methods scale well to 
heterogeneous, semi-structured Big Data 

– Variety is addressed with schema-agnostic keys 

– Volume is addressed with Block and Comparison 
Cleaning methods → they trade slightly lower recall, for 
much higher precision 
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Conclusions – Comparison Cleaning 

• Fine-grained functionality: 

– operate at the level of individual comparisons → 
computationally intensive process 

• Apply to both lazy and proactive methods 
 

• Meta-blocking is the current state-of-the-art 

– Discards both superfluous and redundant comparisons 

– Necessary for reducing comparisons to manageable levels 
for single-threaded ER workflows 

• reduces comparisons by orders of magnitude, with recall > 98% 

– Naturally parallelizable  
Papadakis & Palpanas, ParisBD 2017 



 

 

thank you! 

questions? 

 

 

google: themis palpanas 

full version: publications -> tutorials 
 

http://www.mi.parisdescartes.fr/~themisp/publications/PapadakisPalpanas-TutorialScaDS-LeipsigSummerSchool2016.pptx 
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Big Data Research (BDR) Journal 
http://www.journals.elsevier.com/big-data-research/ 

• New Elsevier journal on topics related to big data 

– advances in big data management/processing 

– interdisciplinary applications 

 

• Editor in Chief for BDR 

– submit your work 

– propose special issues 

 

• google: bdr journal 
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