
Probabilistic NumericsUncertainty in Computation
Philipp Hennig

ParisBD9 May 2017

Research Group for Probabilistic Numerics
Max Planck Institute for Intelligent Systems
Tübingen, Germany

Some of the presented work was supported bythe Emmy Noether Programme of the DFG



Is there room at the bottom?
ML computations are dominated by numerical tasks

task . . . . . . amounts to . . . . . . using black box
marginalize integration MCMC, Variational, EP, . . .train/fit optimization SGD, BFGS, Frank-Wolfe, . . .predict/control ord. diff. Eq. Euler, Runge-Kutta, . . .Gauss/kernel/LSq. linear Algebra Chol., CG, spectral, low-rank,. . .
d Scientific computing has produced a very efficient toolchain, but we are(usually) only using their most generic methods!
d methods on loan do not address some of ML’s special needs

d overly generic algorithms are inefficient
d Big Data-specific challenges not addressed by “classic” methods

ML needs to build its own numerical methods.And as it turns out, we already have the right concepts!
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Computation is Inference
http://probnum.org [Poincaré 1896, Kimeldorf & Wahba 1970, Diaconis 1988, O’Hagan 1992, . . . ]

Numerical methods estimate latent quantities given the result of computations.
integration estimate ∫ ba f(x) dx given {f(xi)}linear algebra estimate x s.t. Ax = b given {As = y}optimization estimate x s.t. ∇f(x) = 0 given {∇f(xi)}analysis estimate x(t) s.t. x′ = f(x, t) given {f(xi, ti)}

It is thus possible to buildprobabilistic numerical methodsthat use probability measures as in- and outputs,and assign a notion of uncertainty to computation.
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Integration
as Gaussian regression
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f(x) = exp(− sin(3x)2 − x2) F =
∫ 3
−3 f(x) dx =?
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A Wiener process prior p(f , F). . .
Bayesian Quadrature [O’Hagan, 1985/1991]

p(f) = GP(f ; 0, k) k(x, x′) = min(x, x′) + c
⇒ p

(∫ b
a f(x) dx

)
= N

[∫ b
a f(x) dx;

∫ b
a m(x) dx,

∫∫ b
a k(x, x′) dx dx′

]

= N (F; 0,−1/6(b3 − a3) + 1/2[b3 − 2a2b + a3]− (b− a)2c)
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. . . conditioned on actively collected information . . .
computation as the collection of information

xt = arg min [varp(F|x1 ,...,xt−1)(F)
]

d maximal reduction of variance yields regular grid
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. . . yields the trapezoid rule!
[Kimeldorf & Wahba 1975, Diaconis 1988, O’Hagan 1985/1991]
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Ey[F] =
∫

E|y[f(x)] dx = N−1∑

i=1
(xi+1 − xi) 12 (f(xi+1) + f(xi))

d Trapezoid rule is MAP estimate under Wiener process prior on f
d regular grid is optimal expected information choice
d error estimate is under-confident
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Computation as Inference
Bayes’ theorem yields four levers for new functionality

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: Likelihood:

Posterior: Evidence:
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Classic methods as basic probabilistic inference
maximum a-posteriori estimation in Gaussian models

Quadrature [Ajne & Dalenius 1960; Kimeldorf & Wahba
1975; Diaconis 1988; O’Hagan 1985/1991]

Gaussian Quadrature GP Regression
Linear Algebra [Hennig 2014]
Conjugate Gradients Gaussian Regression
Nonlinear Optimization [Hennig & Kiefel 2013]
BFGS / Quasi-Newton Autoregressive Filtering
Differential Equations [Schober, Duvenaud & Hennig 2014; Kerst-

ing & Hennig 2016; Schober & Hennig 2016]
Runge-Kutta; Nordsieck Methods Gauss-Markov Filters
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Probabilistic ODE Solvers
Same story, different task [Schober, Duvenaud & P.H., 2014. Schober & P.H., 2016. Kersting & P.H., 2016]

x′(t) = f(x(t), t), x(t0) = x0
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There is a class of solvers for initial value problems that
d has the same complexity as multi-step methods
d has high local approximation order q (like classic solvers)
d has calibrated posterior uncertainty (order q + 1/2)
d can use uncertain initial value p(x0) = N (x0;m0, P0)
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d Probabilistic numerics can be as fast and reliable as classic ones.
d Computation can be phrased on ML language!
d Meaningful (calibrated) uncertainty can be constructed at minimalcomputational overhead (dominated by cost of point estimate)

So what does this mean for Data Science?
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New Functionality, and new Challenges
making use of the probabilistic numerics perspective

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity. Likelihood:

Posterior: Evidence:

11



An integration prior for probability measures
WArped Sequential Active Bayesian Integration (WSABI) [Gunter, Osborne, Garnett, Hennig, Roberts. NIPS 2014]

a prior specifically for integration of probability measures
d f > 0 (f is probability measure)
d f ∝ exp(−x2) (f is product of prior and likelihood terms)
d f ∈ C∞ (f is smooth)

Explicit prior knowledge yields reduces complexity.
[cf. information-based complexity. E.g. Novak, 1988. Clancy et al. 2013, arXiv 1303.2412v2]
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modeling imprecise computation reduces cost

Posterior: Evidence:
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New numerics for Big Data
Uncertainty on Inputs directly effecting numerical decisions

In Big Data setting, batching introduces (Gaussian) noise
L(θ) = 1

N
N∑
i=1
`(yi;θ) ≈ 1

M
M∑
j=1
`(yj;θ) =: L̂(θ) M� N

p(L̂ | L) ≈ N
(
L̂;L,O

(N− M
M

))

L

y1 yN

Classic methods are unstable to noise. E.g.: step size selection
θt+1 = θt − αt∇L̂(θt)
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Probabilistic Line Searches
Step-size selection stochastic optimization [Mahsereci & Hennig, NIPS 2015]
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two-layer feed-forward perceptron on CIFAR 10. Details, additional results in Mahsereci & Hennig, NIPS 2015.
https://github.com/ProbabilisticNumerics/probabilistic_line_search

d batch-size selection [Balles & Hennig, arXiv 1612.05086]
d early stopping [Mahsereci, Balles & Hennig, arXiv 1703.09580]
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modeling imprecise computation reduces cost

Posterior: tracking uncertainty for robustness Evidence:

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015
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Uncertainty Across Composite Computations
interacting information requirements [Hennig, Osborne, Girolami, Proc. Royal Society A 2015]
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d probabilistic numerical methods taking and producing uncertain inputsand outputs allow management of computational resources
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Computation as Inference
new numerical functionality for machine learning

Estimate z from computations c, under model m.

p(z | c,m) = p(z | m)p(c | z,m)∫ p(z | m)p(c | z,m) dz

Prior: structural knowledge reduces complexity Likelihood: modeling imprecise computation reduces cost

Posterior: tracking uncertainty for robustness Evidence: checking models for safety

cf. Hennig, Osborne, Girolami, Proc. Royal Soc. A, 2015
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Probabilistic Certification?
proof of concept: [Hennig, Osborne, Girolami. Proc. Royal Society A, 2015]
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r = Ef̃
[
log p(f̃(x))

p(f(x))
]

= (f(x)− µ(x))ᵀK−1(f(x)− µ(x))− N
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Summary
Uncertain computation as and for machine learning

d computation is inference _ probabilistic numerical methods
d probability measures for uncertain inputs and outputs
d classic methods as special cases

New concepts (not just) for Machine Learning:
prior: structural knowledge reduces complexity

likelihood: imprecise computation lowers cost
posterior: uncertainty propagated through computations
evidence: model mismatch detectable at run-time

Specialized numerical methods for the challenges of machine learningcan be developed within the conceptual framework of machine learning.
http://probnum.org https://pn.is.tue.mpg.de
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