On the benefits of output sparsity for multi-label classification

Evgenii Chzhen

http://echzhen.com

Université Paris-Est, Télécom Paristech

Joint work with: Christoph Denis, Mohamed Hebiri, Joseph Salmon

Introduction

Framework and notation Motivation

Our approach

Add weights Numerical results

Introduction Framework and notation Motivation

Our approach

Add weights Numerical results

Framework and notation

We have ${\cal N}$ observations and each observation belongs to a set of labels.

- Observations: $X_i \in \mathbb{R}^D$,
- Label vectors = binary vectors: $Y_i = (Y_i^1, \dots, Y_i^L)^\top \in \{0, 1\}^L$,
- N, L, D huge and probably $N \eqsim L$,
- Y_i consists of at most K ones (active labels) and $K \ll L$.

Introduction Framework and notation Motivation

Our approach

Add weights Numerical results

Motivation

0-type error vs 1-type error

$$\hat{Y}^l = 1$$
 when $Y^l = 0$ $\hat{Y}^l = 0$ when $Y^l = 1$

Motivation

0-type error vs 1-type error

$$\hat{Y}^l = 1$$
 when $Y^l = 0$ $\hat{Y}^l = 0$ when $Y^l = 1$

Example

- Same amount of mistakes but of different type
- Which one is better for a user?

Motivation

0-type error vs 1-type error

$$\hat{Y}^l = 1$$
 when $Y^l = 0$ $\hat{Y}^l = 0$ when $Y^l = 1$

Hamming loss

$$\mathcal{L}_{H}(Y, \hat{Y}) = \sum_{l=1}^{L} \mathbb{1}_{\{Y^{l} \neq \hat{Y}^{l}\}} = \sum_{Y^{l}=0} \mathbb{1}_{\{\hat{Y}^{l}=1\}} + \sum_{Y^{l}=1} \mathbb{1}_{\{\hat{Y}^{l}=0\}}$$

- For Hamming loss \hat{Y}_0 and \hat{Y}_1 are the same,
- ▶ Hamming loss does not know anything about sparsity K,
- But Hamming is separable, hence easy to optimize.

ntroduction Framework and notatic Motivation

Our approach Add weights Numerical results

Our approach: add weights

Weighted Hamming loss

$$\mathcal{L}(Y, \hat{Y}) = p_0 \sum_{Y^l = 0} \mathbb{1}_{\{\hat{Y}^l = 1\}} + p_1 \sum_{Y^l = 1} \mathbb{1}_{\{\hat{Y}^l = 0\}} ,$$

such that $p_0 + p_1 = 1$.

Our approach: add weights

Weighted Hamming loss

$$\mathcal{L}(Y, \hat{Y}) = \frac{p_0}{\sum_{Y^l = 0}} \mathbb{1}_{\{\hat{Y}^l = 1\}} + \frac{p_1}{\sum_{Y^l = 1}} \mathbb{1}_{\{\hat{Y}^l = 0\}} ,$$

such that $p_0 + p_1 = 1$.

Examples

- Hamming loss: $p_0 = p_1 = 0.5$
- [Jain et al., 2016] : $p_0 = 0$ and $p_1 = 1$
- Our choice: $p_0 = \frac{2K}{L}$ and $p_1 = 1 p_0$

Consider the following situation

$$\bullet Y = (\underbrace{1, \dots, 1}_{K}, \underbrace{0, \dots, 0}_{L-K})^{\top}$$

+ $\hat{Y}_0 = (0, \ldots, 0)^\top$: predicts all labels inactive,

- + $\hat{Y}_1 = (1, \ldots, 1)^\top$: predicts all labels active,
- $\hat{Y}_{2K} = (\underbrace{1, \ldots, 1}_{2K}, \underbrace{0, \ldots, 0}_{L-2K})$: makes K mistakes of 0-type

• Do not forget that $K \ll L$

Consider the following situation

$$\bullet Y = (\underbrace{1, \dots, 1}_{K}, \underbrace{0, \dots, 0}_{L-K})^{\top}$$

+ $\hat{Y}_0 = (0, \ldots, 0)^\top$: predicts all labels inactive,

- + $\hat{Y}_1 = (1, \ldots, 1)^\top$: predicts all labels active,
- $\hat{Y}_{2K} = (\underbrace{1, \ldots, 1}_{2K}, \underbrace{0, \ldots, 0}_{L-2K})$: makes K mistakes of 0-type

• Do not forget that $K \ll L$

Classical Hamming loss

- \hat{Y}_1 is almost the worst
- \hat{Y}_0 is the same as \hat{Y}_{2K}

Consider the following situation

$$\bullet Y = (\underbrace{1, \dots, 1}_{K}, \underbrace{0, \dots, 0}_{L-K})^{\top}$$

+ $\hat{Y}_0 = (0, \ldots, 0)^\top$: predicts all labels inactive,

- + $\hat{Y}_1 = (1, \ldots, 1)^\top$: predicts all labels active,
- $\hat{Y}_{2K} = (\underbrace{1, \ldots, 1}_{2K}, \underbrace{0, \ldots, 0}_{L-2K})$: makes K mistakes of 0-type

• Do not forget that $K \ll L$

[Jain et al., 2016]

- \hat{Y}_0 is the worst
- \hat{Y}_1 is the same as \hat{Y}_{2K}

Consider the following situation

$$\bullet Y = (\underbrace{1, \dots, 1}_{K}, \underbrace{0, \dots, 0}_{L-K})^{\top}$$

+ $\hat{Y}_0 = (0, \ldots, 0)^\top$: predicts all labels inactive,

- + $\hat{Y}_1 = (1, \ldots, 1)^\top$: predicts all labels active,
- $\hat{Y}_{2K} = (\underbrace{1, \ldots, 1}_{2K}, \underbrace{0, \ldots, 0}_{L-2K})$: makes K mistakes of 0-type

• Do not forget that $K \ll L$

Our choice

- + \hat{Y}_0 , \hat{Y}_1 are almost the worst
- \hat{Y}_{2K} is almost the best

ntroduction Framework and notatio Motivation

Our approach Add weights Numerical results

Numerical results

Synthetic dataset with controlled sparsity: N = 2D = 2L = 200

Settings	Median output sparsity		Recall (micro)		Precision (micro)	
	Our	Std	Our	Std	Our	Std
K = 2	2.47	0.04	1.0	0.02	0.80	1.0
K = 6	6.83	0.43	1.0	0.07	0.88	1.0
K = 10	9.85	1.81	0.90	0.18	0.91	1.0
K = 14	10.90	4.11	0.72	0.29	0.93	0.99
K = 18	10.98	6.61	0.58	0.36	0.95	0.99

- When $K \ll L$ we output MORE active labels,
- Hence, better Recall and worse Precision,
- When K > 10 our setting are violated.

- For sparse datasets: errors of 0/1-type are not the same for a user;
- Use our framework if you agree with the previous idea;
- We do not introduce a new algorithm per se, but we construct a new loss;
- We provide a theoretical justification to our framework (generalization bounds and analysis of convex surrogates).

Thank you for your attention!