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Framework and notation

We have N observations and each observation belongs to a set of
labels.

§ Observations: Xi P RD,
§ Label vectors = binary vectors: Yi “ pY

1
i , . . . , Y L

i q
J P t0, 1uL,

§ N, L, D - huge and probably N h L,
§ Yi consists of at most K ones (active labels) and K ! L.
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Motivation

0-type error vs 1-type error

Ŷ l “ 1 when Y l “ 0 Ŷ l “ 0 when Y l “ 1
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Motivation

0-type error vs 1-type error

Ŷ l “ 1 when Y l “ 0 Ŷ l “ 0 when Y l “ 1

Example

Y “ p1, . . . , 1
loomoon

10

, 0, . . . , 0
loomoon

90

qJ ,

Ŷ0 “ p1, . . . , 1
loomoon

10

, 1, . . . , 1
loomoon

5

, 0, . . . , 0
loomoon

85

qJ ,

Ŷ1 “ p1, . . . , 1
loomoon

5

, 0, . . . , 0
loomoon

5

, 0, . . . , 0
loomoon

90

qJ .

§ Same amount of mistakes but of different type
§ Which one is better for a user?
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Motivation

0-type error vs 1-type error

Ŷ l “ 1 when Y l “ 0 Ŷ l “ 0 when Y l “ 1

Hamming loss

LHpY, Ŷ q “
L

ÿ

l“1
1
tY l‰Ŷ lu

“
ÿ

Y l“0
1
tŶ l“1u `

ÿ

Y l“1
1
tŶ l“0u

§ For Hamming loss Ŷ0 and Ŷ1 are the same,
§ Hamming loss does not know anything about sparsity K,
§ But Hamming is separable, hence easy to optimize.
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Our approach: add weights

Weighted Hamming loss

LpY, Ŷ q “ p0
ÿ

Y l“0
1
tŶ l“1u ` p1

ÿ

Y l“1
1
tŶ l“0u ,

such that p0 ` p1 “ 1.
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Our approach: add weights

Weighted Hamming loss

LpY, Ŷ q “ p0
ÿ

Y l“0
1
tŶ l“1u ` p1

ÿ

Y l“1
1
tŶ l“0u ,

such that p0 ` p1 “ 1.

Examples
§ Hamming loss: p0 “ p1 “ 0.5
§ [Jain et al., 2016] : p0 “ 0 and p1 “ 1
§ Our choice: p0 “

2K
L and p1 “ 1´ p0
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Why our choice of weights?

Consider the following situation
§ Y “ p1, . . . , 1

loomoon

K

, 0, . . . , 0
loomoon

L´K

qJ

§ Ŷ0 “ p0, . . . , 0qJ: predicts all labels inactive,
§ Ŷ1 “ p1, . . . , 1qJ: predicts all labels active,
§ Ŷ2K “ p1, . . . , 1

loomoon

2K

, 0, . . . , 0
loomoon

L´2K

q: makes K mistakes of 0-type

§ Do not forget that K ! L
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loomoon

L´2K

q: makes K mistakes of 0-type

§ Do not forget that K ! L

Classical Hamming loss
§ Ŷ1 is almost the worst
§ Ŷ0 is the same as Ŷ2K
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§ Ŷ1 is the same as Ŷ2K
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Why our choice of weights?

Consider the following situation
§ Y “ p1, . . . , 1

loomoon

K

, 0, . . . , 0
loomoon

L´K

qJ

§ Ŷ0 “ p0, . . . , 0qJ: predicts all labels inactive,
§ Ŷ1 “ p1, . . . , 1qJ: predicts all labels active,
§ Ŷ2K “ p1, . . . , 1

loomoon

2K

, 0, . . . , 0
loomoon

L´2K

q: makes K mistakes of 0-type

§ Do not forget that K ! L

Our choice
§ Ŷ0, Ŷ1 are almost the worst
§ Ŷ2K is almost the best
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Numerical results

Synthetic dataset with controlled sparsity: N “ 2D “ 2L “ 200
Settings Median output sparsity Recall (micro) Precision (micro)

Our Std Our Std Our Std
K “ 2 2.47 0.04 1.0 0.02 0.80 1.0
K “ 6 6.83 0.43 1.0 0.07 0.88 1.0
K “ 10 9.85 1.81 0.90 0.18 0.91 1.0
K “ 14 10.90 4.11 0.72 0.29 0.93 0.99
K “ 18 10.98 6.61 0.58 0.36 0.95 0.99

§ When K ! L we output MORE active labels,
§ Hence, better Recall and worse Precision,
§ When K ą 10 our setting are violated.
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Conclusion

§ For sparse datasets: errors of 0/1-type are not the same for a
user;

§ Use our framework if you agree with the previous idea;
§ We do not introduce a new algorithm per se, but we construct
a new loss;

§ We provide a theoretical justification to our framework
(generalization bounds and analysis of convex surrogates).

12 / 13



Thank you for your attention!
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