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e d ‘analyse et modélisa témes pour l'aide a la déc

Problem

Recommender Systems

There are two main approaches to user-item rec- -
ommender systems|1]. YT <I-
o Y
e Content-based filtering relies on the char- product’s o o . Content Based Filtering -
acteristics of users and items to produce Et\ . l & < g N
recommendations.
‘ N J
e Collaborative filtering relies on the re- O = 0
lationship between users and items that @
emerges from the ratings given by the ®|7 Collaborative Filtering
former to the latter. & LN WS p’
X %
Our approach aims to use side-information R —|l U
to better constraint the matrix factorization NE
problem|3] of collaborative filtering. ¢

Ongoing wo Matrix Factorization wit

Available data

The model we use as a baseline is the simple approach described in |2]|. The loss function we aim to
minimize 1s

® bynthetic Pataset desighed 1o study the L(U.P) = ||M o (R—UPT)|[Z+XU3+P]3)
e Movielens[5| Dataset to confront the o °
model to real-world data
e In-house Dataset to apply the model to o
EasyCrowd use cases
Goals Figure 1: Schema for the baseline model: we determine U and P that best reconstruct R
e Improve the performances on learning and Inference Rules
ranking metrics (RMSE, TopN|4]) »
o A?dress .the cold-start problem using side Vi € [1,ny],u; = Z miTiP;. | X Zm”ﬁp}pj' + A,
Intormation j j

Possible Interpretations

e Data Augmentation: Factorization of an
R X

Y' 0

extended matrix R =

Latent Variables to cons

e Joint Embedding
We introduce two latent variables Wi and Wp of respective size k,, X n¢ and £k, X ns such that

e Probabilistic Bayesian Network

: : U'XWy = I,
Difficulties

PTYWp = I,,

e Many hyper-parameters to fine tune
These matrices will be approximated in a way similar to U and P. Due to the additional degrees of

freedom, we must include additional regularization terms. The loss function that we are trying to
minimize takes the following form:

e Long computation time
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