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Big Data — A Bad Definrtion

Data sets, typically consisting of or
of records, that are so vast and complex that they
require new and powerful computational

resources to process.

- Dictionary.com



Big Data as a Resource

"For a long time, we thought that Tamoxifen was
roughly 80% effective for breast cancer patients.
But now we know much more:

we know that it's 100% effective in /0% to 80% of
the patients, and ineffective in the rest.”

- Tim O'Rellly et al."How Data Science is Transforming Health Care” 2012

With enough of the right data you can determine
precisely who the treatment will work for.

Thus, even a | % effective drug could save lives



Big Data Software Growth
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Regardless of your definition...

The technology has fundamentally changed.

Massively scalable processing and storage

Pay-as-you-go processing and storage

Flexible schema on read vs. schema on write

Fasier integration of search, query and analysis

Variety of languages for interface/interaction

Open source ecosystem driving innovation




Big Data Software Moves Fast

We'll look at the following trends:

1) Integrated Stacks vs Silos

2) “Real-Time"” Redux

3) Machine Learning and Advanced Analytics

4) Serving Data and Models

o) Big Data Software + X <HPC, People, loT,...>



INTEGRATED STACKS VS SILOS



AMPLab: A Public/Private Partnership

Launched 201 |; ~90 Students, Postdocs, and Faculty
Scheduled to run through 2016

National Science Foundation Expedition Award
Darpa XData; DoE/Lawrence Berkeley National Lab

Industrial Sponsors:
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AMP: 3 Key Resources

e Machine Learning, Statistical Methods
e Prediction, Business Intelligence

e Clusters and Clouds
e Warehouse Scale Computing

e Crowdsourcing, Human Computation
e Data Scientists, Analysts




Berkeley Data Analytics Stack

.‘Spc:ﬂ:Z

TACHYON
R




Apache Spark Meetups (Jan 2015)
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Apache Spark Meetups (Dec 2015)
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2015: Typical Spark Coverage

Oz,

November 4, 2015

Skip the Ph.D and Learn Spark, Data Science Salary Survey
Says
Alex Woodie

Prospective data scientists can boost their salary
more by learning Apache Spark and its tied-at-
the-hip language Scala than obtaining a Ph.D., a
recent data science survey by O’Reilly suggests.




Big Data

MapReduce
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AMPLab Unification Strategy

Don't specialize MapReduce — Generalize it!
Two addrtions to Hadoop MR:
|. General Task DAGs
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2. Data Sharing

Fewer Systems to Master
Less Data Movement ‘SF)(_)"‘II(\Z

M. Zaharia, M. Choudhury, M. Franklin, I. Stoica, S. Shenker, “Spark: Cluster Computing
with Working Sets, USENIX HotCloud, 2010. .
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Cost of Iteration In Map-Reduce

Redundantly save
output between
stages
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Data
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Memory Opt. Datatlow
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Memory Opt. Dataflow View
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Resilient Distributed Datasets (RDDs)

APl coarse-grained transformations (map, group-by,
join, sort, filter; sample,...) on iImmutable collections

Resilient Distributed Datasets (RDDs)

» Collections of objects that can be stored in memory or
disk across a cluster

» Built via parallel transformations (map, filter; ...)

» Automatically rebuilt on fallure

Rich enough to capture many models:
» Data flow models: MapReduce, Dryad, SQL, ...

» Specialized models: Pregel, Hama, ...

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory
cluster computing, NSDI 2012.



Abstraction: Dataflow Operators

map
filter
groupBy

sort

union

join
leftOuterloin

rightouterJ]oin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

Z1p

sample

take

first
partitionBy
mapwith
pipe

save



Fault Tolerance with RDDs

RDDs track the series of transformations used to
build them (their lineage)

» Log one operation to apply to many elements
» No cost If nothing fails

Enables per-node recomputation of lost data

messages = textFile(...).filter(_.contains(“error”))
.map( )

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func = _.contains(...) func = _.split(...)




Spark SQL — Deeper Integration

Replaces “Shark™ — Spark’s implementation of Hive

* Hive dependencies were cumbersome

* Missed integration opportunities

Spark SQL has two main additions
1) Tighter Spark integration, including Data Frames

2) Catalyst Extensible Query Optimizer

First release May 2014; in production use

* e.g, large Internet co has deployed on 8000 nodes; >100PB
with typical queries covering |0's of TB

R. Xin, J. Rosen, M. Zaharia, M. Franklin,S. Shenker, I. Stoica, “Shark: SQL and Rich Analytics at Scale,
SIGMOD 2013.

M. Armbrust, R. Xin et al., “Spark SQL: Relational Data Processing in Spark”, SIGMOD 2015.



SOQL + ML + Streaming

// Load historical data as an RDD using Spark SQL
val trainingData = sql(
"SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib

val model = new KMeans()
.setFeaturesCol("location")
.setPredictionCol("language")
.fit(trainingData)

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
.map(tweet => model.predict(tweet.location))

26



DatakFrames

employees

Join(dept, employees("deptld") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))
.agg(count("name"))

Some people think this is an improvement over SQL ©

Recently added: a binding for R dataframes



Catalyst Optimizer

Extensibility via Optimization Rules written in Scala

Code generation for inner-loops
Extension Points:

Data Sources: e.g., CSV, Avro, Parquet, |DBC, ...

* via TableScan (all cols), PrunedScan (project),
FilteredPrunedScan(push advisory selects and projects)
CatalystScan (push advisory full Catalyst expression trees)

User Defined Types



An Interesting thing about
SparkSQL Performance

DataFrame SQL _

DataFrame R
DataFrame Python

DataFrame Scala

I

]

I
RDD Python
RDD Scala _“

0 2 4 o 38 10

Time to Aggregate 10 million int pairs (secs)
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JSON Type Inference
{

"text": "This is a tweet about #Spark",
"tags": ["#Spark"],
"loc": {"lat": 45.1, "long": 90}

} :> text STRING NOT NULL,

{ tags ARRAY<STRING> NOT NULL,

‘text™ "This is another tweet”, loc STRUCT<lat FLOAT NOT NULL,
‘tags™ ], long FLOAT NOT NULL>

"loc": {"lat": 39, "long": 88.5}

%

"text": "A #tweet without #location",
"tags": ["#tweet", "#location"]

}

Currently can also do Type Inference for Python RDDs;
CSV and XML in progress



Query Federation made Easy?
A join of a MySQL Table and a JSON file using Spark SQL

CREATE TEMPORARY TABLE users
USING jdbc
OPTIONS(driver "mysql" url "jdbc:mysql://userDB/users")



Don't Forget About
Approximation

BDAS Uses Approximation in two main ways:

|) BlinkDB (Agarwal et al. EuroSys |3)
* Run queries on a sample of the data
* Returns answer and confidence interval
* (an adjust time vs confidence

2) Sample Clean (Wang et al. SIGMOD [4)
* (lean a sample of the data rather than whole data set
* Run query on sample (get error bars) OR
* Run query on dirty data and correct the answer



Performance vs. Specialized

Response Time Throughput Response Time
(sec) (records/s) (hours)
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Zaharia et al,,“Spark: Building a Unified Engine for Big Data Processing”, CACM 2016 to appear



Spark User Survey //2015
(One Size Fits Many)

Core
SQL N S S
Streaming ~_
MLiib I
GraphX —

0% 20% 40% ©60% 80% 100%

Fraction of Users

~ 1400 respondents; 88% Use at least 2 components; 60% at least 3; 2/% at least 4;
Source: Databricks 34



"REALTIME" REDUX



Renewed Excitement Around
Streaming

Stream Processing (esp. Open Source)
» Spark Streaming
» Samza
» Storm
» Flink Streaming

» Google Millwheel and Cloud Dataflow
» <YOUR FAVORITE SYSTEM HERE>

Message Transport
» Kafka
» Kenesis
» Flume



| ambda Architecture:
Real-Time + Batch

batch layer serving layer

lambda-architecture.net ..



L ambda:; How Unified Is [t?

Have to write everything twicel

Have to fix everything (maybe) twice.
Subtle differences in semantics

how much Duct Tape required?

What about Graphs, ML, SOQL, etc.?

see e.g, Jay Kreps: http://radar.oreill.com/2014/0//questioning-the-lambda-architecture.html
and Franklin et al., CIDR 2009.

38



Spark Streaming

Scalable, fault-tolerant stream processing system

i Fault- _
High-level Integration
API tolerant o
Integrate with MLIib,
joins, windows, ... Exactly-once SQL, DataFrames,
often 5x less code semantics, even for GraphX

stateful ops

[ Kafka | f \
. 1 f \ File systems
| Flume J\Z \ J
i Kinesis i> Spqr’( i>: Databases |
“worsiss | /| Streaming | 1/ \
; o \ j \ Dashboards )
 Twitter ]
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Spark Streaming

Microbatch approach provides low latency

RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4

datafrom | = datafrom | | datafrom ' datafrom

DStream =
S timeOto1l time 1to 2 time2to3 time3to4

Additional operators provide windowed operations

time 1 time 2 time 3 time 4 time 5
original
DStream
window-based
operation

windowed
DStream

window window window

at time 1 attime 3 attime 5

M. Zaharia, et al, Discretized Streams: Fault-Tollerant Streaming Computation at Scale,
SOSP 2013. 0



Batch/Streaming Unification

Batch and streaming codes virtually the same
» Easy to develop and maintain consistency

// count words from a file (batch)

val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

val words = file.flatMap(_.split(" "))
wordCounts.print()

// count words from a network stream,\every 10s (streaming)

val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

[val words = lines.flatMap(_.split(" "))
wordCounts.print()

41



Spark Streaming - Comments

Mini-batch approach appears to be “low latency”
enough for many applications.

Integration with the rest of the BDAS/Spark stack
s a big deal for users

We're also adding a “timeseries’ capability to
BDAS (see AMPCamp 6 ampcamp.berkeley. edu)

initially batch but streaming integration planned



MACHINE LEARNING PIPELINES



Beyond ML Operators

Data Analytics I1s a complex process

Rare to simply run a single algorithm on an
existing data set

Emerging systems support more complex

workflows:

* Spark MLPipelines

* Google Tensortlow
* KeystoneML (BDAS)



A Small Pipeline in GraphX

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
-
| HDFS_ | HDFS_ ;
Spark | | | | | | o 1492
Giraph + Spark , | | 605
Graphlab + Spark | | 375
GraphX | 1342

0 200 400 600 800 1000 1200 1400 1600
Total Runtime (in Seconds)

Need to measure End-to-End Performance



MLBase: Distributed ML Made Easy

DB Query Language
Analogy:
Hyper Parameter Tuning Libraries Specify What not How

MLBase chooses:
Pipelines * Algorithms/Operators
* Ordering and Physical

St Placement
Linear SJ:E Parameter and
Algebra Hyperparameter
Settings

Spark * Featurization
Leverages Spark for Speed

and Scale

T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin, M. Jordan, “MLBase: ADlstrlbuted
Machine Learning System”, CIDR 2013.




Keystone ML

Software framework for describing complex
machine learning pipelines built on Apache Spark.

Pipelines are specified using domain specific anc
oeneral purpose logical operators.

N S A = S N BHame ‘
Column e, | Tralmng ‘ ' Linear :
Sampler | | ! els Solver |

4 e _1 _______

J

Llnear
Map

-» Predictions

~
Training [ PSu_. SIFT Reduce
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Data i j




High-level APl =» Optimizations

_______

Automated ML o
operator

selection

N © < o=

Auto-caching for iterative workloads

Column Distributed Column Local Trainingl§ | .-
Sampler PCA Sampler GMM Labels




Keystone[ML: Latest News

v0.3 to be released this week.

z
:

ImageNet
500 -
400 -
300-

Scale-out performance on |0s of TBs of
training features on 100s of machines. - +
apps: Image Classification, Speech, Text. & @ @ s _ & i &

8 16 32 64 128
Cluster Size (# of nodes)

Stage MLoading Train Data _Featurization MModel Solve
9€ W Loading Test Data M Model Eval

-l
[$]

=10 .

Time (minutes)

First versions of node-level and whole-
pipeline optimizations.

Many new high-speed, scalable operators

Coming soon:

» Principled, scalable hyperparameter
tuning. (TUPAQ - SoCC 2015)

)
\
\

\

\--.

» Advanced cluster sizing/job

placement algorithms. (Ernest - NSDI
2016)

Time

Machines

Machines,
Input Size

Use few iterations for
training




MODEL AND DATA SERVING



Introducing Velox: Model Serving

Iraining

Data

> Model

Where do models go?

S

Conference
Papers

N

Sales Drive
Reports Actions




Driving Actions

Suggesting ltems Fraud Cognitive Internet of
at Checkout Detection Assistance Things
&
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Low-Latency Personalized




Current Solutions & Limrtations

Materialize Everything: Pre-compute all Predictions

tems m

MySal

» Low Latency

Data Serving

Train model
on old data

Users

Specialized Service: Build a Prediction Service

High-Latency
Train model » OP e—off

on old data

Prediction Service
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Velox Model Serving System

[CIDR'I5]

Decompose personalized predictive models:

Feature Personalization

Feature Model Model .

Caching : Updates

ApPprox. Actiye

Features Learning
Online

Split

Order-of-magnitude reductions in prediction latencies.



Hybrid Learning

Update feature functions offline using batch solvers
* |everage high-throughput systems (Apache Spark)
* Exploit slow change in population statistics

Wy,

Update the user weights online:
* Simple to train + more robust model
* Address rapidly changing user statistics

55



Serving Data

* Intelligent services also require serving data (in
addition to predictions).

o KV Stores such as Cassandra, HBase, etc.
provide this functionality.

* J[raditional problems of merging analytics and
serving (or OLTP and OLAP) remain.



BIG DATA FOR IOT, HIGH
PERFORMANCE COMPUTING
AND MORE...



igh-Performance Computing

HPC used to have a monopoly on “big iron”
Completely different scale/pace of innovation

White House “National Strategic Computing
Initiative” Includes combining HPC and Big Data

Scientific Computing Meets Big Data Technology:
An Astronomy Use Case

Zhao Zhang*° Kyle Barbary®1 Frank Austin Nothaft*t  Evan Sparks*
Oliver Zahn'  Michael J. Franklin*®  David A. Patterson**  Saul Perlmutter®
* AMPLab, University of California, Berkeley
° Berkeley Institute for Data Science, University of California, Berkeley
t Berkeley Center for Cosmological Physics, University of California, Berkeley
1 ASPIRE Lab, University of California, Berkeley

IEEE Conf. on Big Data 2015



AMPLab Genomics "

*SNAP (5calable Nucleotide Alignment):
alignment In hours vs. days

*Why Speed Matters — A real-world use case

M. Wilson, ..., and C. Chiu, “Actionable Diagnosis of Neruoleptospirosis by Next-Generation
Sequencing’, June 4, 2014, New England Journal of Medicine,

Table 1: Summary Performance on NA12878

Tool | EC2 I BQSR IR DM Sort FS | Total
[14] 1t 1283m 658m — — —
[32] 1t — — 509m 203m 54m41 o
[50] 11 — — 44m50 83m 6m11 2075m1
[51] 11 — 160m 562m — $214.39
ADAM 1t 1602m 366m 143m 108m 2ml7 2221m17
1/1.25% 1.7 % 1/3.8x 1/1.3% 2.7X 1/1.07 x
ADAM 32x% 74m 64m 34mb6 39m23 Om43 223m2
17X 10 X 1.2X 2.1 8.6 X 9.3 X%
ADAM 64 41mb2 35m39 21m35 18m56 0Om49 118mb51
J— 30 X 18 X 2.0 X 4.3 X 7.5 X
ADAM 128« 25mb9 20m?27 15m27 10m31 1m20
49 X 32X 2.9% 7.9X% 4.3 X
llllllllll ~ Al A IOV A ll.’ vawsaxs
g- Nothatt, et. ag, Rethinking Patas-'ntens“{,e i2.8xlarge $6.20 32 proc, 244G RAM, 8 SDD
cience Using Scalable Analytics Systems”, x 13.2xlarge $0.70 8 proc, 61G RAM, 1 SDD

ACM SIGMOD Conf., June 2015.

Application
Transformations

Presentation
Enriched Models

Evidence Access
MapReduce/DBMS

Schema
Data Models

Materialized Data
Columnar Storage

Data Distribution
Parallel FS

Physical Storage
Attached Storage 59



Integrating the "P" in AM

~

Optimization for
human-in-the-loop
analtyics (AMPCrowd)

* SampleClean
* Straggler Mitigation
* Pool Maintenance

* Active Learning

Labeling
tasks

Labels &
predictions

Retainer Pool Slots

Pool Manager

Scheduler

Mitigacer

Task batch

|

| Task batch EENGETIEYS
Selector size Resizer
]

wiope|d
pMoID

p4ENDYI]

Jaymeg
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BDS Meets Internet of Things

Streaming and Real Time
What to keep, what to drop
Edge Processing

Privacy

Partrtions, Fault Tolerance, Eventual Consistency,
Order-dependence



Big Data Software Moves Fast

VWe looked at the following trends:

1) Integrated Stacks vs Silos

2) “Real-Time"” Redux

3) Machine Learning and Advanced Analytics

4) Serving Data and Models

o) Big Data Software + X <HPC, People, loT,...>



To find out more or
oet Involved:

lab

amplab.berkeley.edu

franklin@berkeley.edu

Thanks to NSF CISE Expeditions in Computing, DARPA XData,
Founding Sponsors: Amazon Web Services, Google, IBM, and SAR
the Thomas and Stacy Siebel Foundation,
all our industrial sponsors and partners, and all the members of the AMPLab Team.



