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Big Data – A Bad Definition

Data sets, typically consisting of billions or trillions 
of records, that are so vast and complex that they 
require new and powerful computational 
resources to process.

- Dictionary.com



Big Data as a Resource
“For a long time, we thought that Tamoxifen was 
roughly 80% effective for breast cancer patients.   
But now we know much more: 

we know that it’s 100% effective in 70% to 80% of 
the patients, and ineffective in the rest.”  

- Tim O’Reilly et al. “How Data Science is Transforming Health Care” 2012 

With enough of the right data you can determine 
precisely who the treatment will work for.

Thus, even a 1% effective drug could save lives



Big Data Software Growth
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Previously: 1980’s & 90’s: Parallel Database systems;  
early 2000’s Google MapReduce

���



Regardless of your definition…
The technology has fundamentally changed.

•  Massively scalable processing and storage
•  Pay-as-you-go processing and storage
•  Flexible schema on read vs. schema on write
•  Easier integration of search, query and analysis
•  Variety of languages for interface/interaction
•  Open source ecosystem driving innovation 



Big Data Software Moves Fast
We’ll look at the following trends:

1)  Integrated Stacks vs Silos

2)  “Real-Time” Redux

3)  Machine Learning and Advanced Analytics

4)  Serving Data and Models

5)  Big Data Software + X <HPC, People, IoT,…>
6



INTEGRATED STACKS VS SILOS
Trend 1
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AMPLab: A Public/Private Partnership���
Launched 2011; ~90 Students, Postdocs, and Faculty
Scheduled to run through 2016
National Science Foundation  Expedition Award  
Darpa XData; DoE/Lawrence Berkeley National Lab

Industrial Sponsors:



AMP: 3 Key Resources
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Velox Model Serving
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Apache Spark Meetups (Jan 2015) 
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Apache Spark Meetups (Dec 2015)

+ 193% +339% 12
This Morning:  166 groups with 75739 members
(including 3 groups in Africa) 



2015: Typical Spark Coverage
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Big Data Ecosystem Evolution
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AMPLab Unification Strategy
Don’t specialize MapReduce – Generalize it!

Two additions to Hadoop MR:

1. General Task DAGs

2. Data Sharing

Productivity: 
Fewer Systems to Master 
Less Data Movement

Spark
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M. Zaharia, M. Choudhury, M. Franklin, I. Stoica, S. Shenker, “Spark: Cluster Computing 
with Working Sets, USENIX HotCloud, 2010. 



Iteration in Map-Reduce
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Cost of Iteration in Map-Reduce
Map Reduce Learned

Model

w(1)

w(2)

w(3)

w(0)

Initial
Model

Training
Data

Read 2
Repeatedly ���
load same data

17



Cost of Iteration in Map-Reduce
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Dataflow View
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Memory Opt. Dataflow
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Memory Opt. Dataflow View
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Spark:10-100× faster than Hadoop MapReduce
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Resilient Distributed Datasets (RDDs)
API:  coarse-grained transformations (map, group-by, 
join, sort, filter, sample,…) on immutable collections

Resilient Distributed Datasets (RDDs)
» Collections of objects that can be stored in memory or 

disk across a cluster
» Built via parallel transformations (map, filter, …)
» Automatically rebuilt on failure

Rich enough to capture many models:
» Data flow models: MapReduce, Dryad, SQL, …
» Specialized models: Pregel, Hama, …

M. Zaharia, et al, Resilient Distributed Datasets: A fault-tolerant abstraction for in-memory 
cluster computing, NSDI 2012.  22



Abstraction: Dataflow Operators

map 
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Fault Tolerance with RDDs
RDDs track the series of transformations used to 
build them (their lineage)
» Log one operation to apply to many elements
» No cost if nothing fails

Enables per-node recomputation of lost data
messages = textFile(...).filter(_.contains(“error”)) 
                        .map(_.split(‘\t’)(2)) 
                         

HadoopRDD	
  
path	
  =	
  hdfs://…	
  

FilteredRDD	
  
func	
  =	
  _.contains(...)	
  

MappedRDD	
  
func	
  =	
  _.split(…)	
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Spark SQL – Deeper Integration
Replaces “Shark” – Spark’s implementation of Hive

•  Hive dependencies were cumbersome
•  Missed integration opportunities

Spark SQL has two main additions
1) Tighter Spark integration, including Data Frames
2) Catalyst Extensible Query Optimizer

First release May 2014; in production use
•  e.g., large Internet co has deployed on 8000 nodes;  >100PB 

with typical queries covering 10’s of TB
R. Xin, J. Rosen, M. Zaharia, M. Franklin,S. Shenker, I. Stoica, “Shark: SQL and Rich Analytics at Scale, 
SIGMOD 2013. 
 
M. Armbrust, R. Xin et al., “Spark SQL: Relational Data Processing in Spark”, SIGMOD 2015. 
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SQL + ML + Streaming
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DataFrames 

employees 

.join(dept, employees("deptId") === dept("id"))  

.where(employees("gender") === "female")  

.groupBy(dept("id"), dept("name")) 

.agg(count("name")) 

Some people think this is an improvement over SQL J

Recently added:  a binding for R dataframes 27



Catalyst Optimizer
Extensibility via Optimization Rules written in Scala

Code generation for inner-loops

Extension Points:

Data Sources: e.g., CSV, Avro, Parquet, JDBC, …
•  via TableScan (all cols), PrunedScan (project), 

FilteredPrunedScan(push advisory selects and projects) 
CatalystScan (push advisory full Catalyst expression trees)

User Defined Types
28



An interesting thing about 
SparkSQL Performance

29



JSON Type Inference
{ 
"text": "This is a tweet about #Spark",  
"tags": ["#Spark"], 
"loc": {"lat": 45.1, "long": 90} 
} 
{ 
"text": "This is another tweet",    
"tags": [], 
"loc": {"lat": 39, "long": 88.5} 
} 
{ 

"text": "A #tweet without #location",  
"tags": ["#tweet", "#location"]  
} 
 

text STRING NOT NULL , 
tags ARRAY<STRING> NOT NULL, 
loc STRUCT<lat FLOAT NOT NULL,  

           long FLOAT NOT NULL> 

Currently can also do Type Inference for Python RDDs;  
CSV and XML in progress
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Query Federation made Easy?

CREATE TEMPORARY TABLE users  
USING jdbc 
OPTIONS(driver "mysql" url "jdbc:mysql://userDB/users") 
 
CREATE TEMPORARY TABLE logs 
USING json  
OPTIONS (path "logs.json") 
 
SELECT users.id, users.name, logs.message 
FROM users JOIN logs  
WHERE users.id = logs.userId  
AND users.registrationDate > "2015-01-01" 

A join of a MySQL Table and  a JSON file using Spark SQL
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Don’t Forget About 
Approximation

BDAS Uses Approximation in two main ways:

1)  BlinkDB (Agarwal et al. EuroSys 13)
•  Run queries on a sample of the data
•  Returns answer and confidence interval
•  Can adjust time vs confidence

2)  Sample Clean (Wang et al. SIGMOD 14)
•  Clean a sample of the data rather than whole data set
•  Run query on sample (get error bars) OR
•  Run query on dirty data and correct the answer

32



Performance vs. Specialized

33
Zaharia et al., “Spark: Building a Unified Engine for Big Data Processing”, CACM 2016 to appear



Spark User Survey 7/2015���
(One Size Fits Many)

34
~1400 respondents;  88% Use at least 2 components; 60% at least 3; 27% at least 4;
Source: Databricks    



“REALTIME” REDUX
Trend II
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Renewed Excitement Around 
Streaming

Stream Processing (esp. Open Source)
» Spark Streaming
» Samza
» Storm
» Flink Streaming
» Google Millwheel and Cloud Dataflow
» <YOUR FAVORITE SYSTEM HERE>

Message Transport
» Kafka
» Kenesis
» Flume

36



Lambda Architecture: ���
Real-Time + Batch

lambda-architecture.net 37



Lambda: How Unified Is It? 
Have to write everything twice!

Have to fix everything (maybe) twice.

Subtle differences in semantics

how much Duct Tape required?

What about Graphs, ML, SQL, etc.?
see e.g., Jay Kreps: http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
and Franklin et al., CIDR 2009.
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Spark Streaming
Scalable, fault-tolerant stream processing system

File systems 

Databases 

Dashboards 

Flume 

Kinesis 

HDFS/S3 

Kafka 

Twitter 

High-level 
API 

  

joins, windows, … 
often 5x less code 

Fault-
tolerant 

 

Exactly-once 
semantics, even for 

stateful ops 

Integration 
 

Integrate with MLlib, 
SQL, DataFrames, 

GraphX 
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Spark Streaming
Microbatch approach provides low latency

Additional operators provide windowed operations

M. Zaharia, et al, Discretized Streams: Fault-Tollerant Streaming Computation at Scale,  
SOSP 2013.  40



Batch/Streaming Unification
Batch and streaming codes virtually the same
» Easy to develop and maintain consistency

// count words from a file (batch) 
val file = sc.textFile("hdfs://.../pagecounts-*.gz") 
val words = file.flatMap(_.split(" ")) 
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _) 
wordCounts.print() 

// count words from a network stream, every 10s (streaming) 
val ssc = new StreamingContext(args(0), "NetCount", Seconds(10), ..) 
val lines = ssc.socketTextStream("localhost”, 3456) 
val words = lines.flatMap(_.split(" ")) 
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _) 
wordCounts.print() 
ssc.start() 41



Spark Streaming - Comments

Mini-batch approach appears to be “low latency” 
enough for many applications.

Integration with the rest of the BDAS/Spark stack 
is a big deal for users

We’re also adding a  “timeseries” capability to 
BDAS (see AMPCamp 6 ampcamp.berkeley.edu)

•  initially batch but streaming integration planned

42



MACHINE LEARNING PIPELINES
Trend III
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Beyond ML Operators
•  Data Analytics is a complex process

•  Rare to simply run a single algorithm on an 
existing data set

•  Emerging systems support more complex 
workflows:
•  Spark MLPipelines
•  Google TensorFlow
•  KeystoneML (BDAS)

44
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MLBase: Distributed ML Made Easy
DB Query Language 
Analogy:

Specify What not How

MLBase chooses:
•  Algorithms/Operators 
•  Ordering and Physical 

Placement
•  Parameter and 

Hyperparameter 
Settings

•  Featurization
Leverages Spark for Speed 
and Scale

T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin, M. Jordan, “MLBase: A Distributed 
Machine Learning System”, CIDR 2013. 46



KeystoneML
Software framework for describing complex 

machine learning pipelines built on Apache Spark.

Pipelines are specified using domain specific and 
general purpose logical operators. 



Automated ML 
operator 
selection 

Auto-caching for iterative workloads 

High-level API è Optimizations���



KeystoneML: Latest News
v0.3 to be released this week.

Scale-out performance on 10s of TBs of 
training features on 100s of machines. 
apps: Image Classification, Speech, Text.

First versions of node-level and whole-
pipeline optimizations.

Many new high-speed, scalable operators

Coming soon:

» Principled, scalable hyperparameter 
tuning. (TuPAQ - SoCC 2015)

» Advanced cluster sizing/job 
placement algorithms. (Ernest - NSDI 
2016)



MODEL AND DATA SERVING
Trend IV
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Data Model
Where do models go?

Conference���
Papers

Sales
Reports

Drive
Actions

Training

Introducing Velox: Model Serving



Driving Actions
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Suggesting Items���
at Checkout

Fraud ���
Detection

Cognitive ���
Assistance

Internet of
Things

Low-Latency Personalized Rapidly Changing



Current Solutions & Limitations
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Materialize Everything: Pre-compute all Predictions

Train model���
on old data U

se
rs

Items

Low Latency
Data Serving

Specialized Service: Build a Prediction Service

Train model���
on old data

One-off ���
Prediction Service

High-Latency



Velox Model Serving System
Decompose personalized predictive models:

54

[CIDR’15]

Split

Personalization
Model

Feature���
Model

OnlineBatch

Feature
Caching

Approx.
Features

Online
Updates

Active
Learning

Order-of-magnitude reductions in prediction latencies.



Hybrid  Learning

Split

Personalization
Model

Feature���
Model

Update the user weights online:
•  Simple to train + more robust model
•  Address rapidly changing user statistics

Update feature functions offline using batch solvers
•  Leverage high-throughput systems (Apache Spark)
•  Exploit slow change in population statistics

f(x; ✓)T wu
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Serving Data
•  Intelligent services also require serving data (in 

addition to predictions).

•  KV Stores such as Cassandra, HBase, etc. 
provide this functionality.

•  Traditional problems of merging analytics and 
serving (or OLTP and OLAP) remain.

56



BIG DATA FOR IOT, HIGH 
PERFORMANCE COMPUTING 
AND MORE…

Trend V
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High-Performance Computing 
HPC used to have a monopoly on “big iron”

Completely different scale/pace of innovation

White House  “National Strategic Computing 
Initiative” Includes combining HPC and Big Data

58IEEE Conf. on Big Data 2015



AMPLab Genomics 
• SNAP (Scalable Nucleotide Alignment): 
alignment in hours vs. days 
• Why Speed Matters – A real-world use case

M. Wilson, …, and C. Chiu, “Actionable Diagnosis of Neruoleptospirosis by Next-Generation 
Sequencing”, June 4, 2014, New England Journal of Medicine,  

June 4, 2014
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In a First, Test of DNA Finds Root of Illness 
By CARL ZIMMER JUNE 4, 2014  
 

Joshua Osborn, 14, lay in a coma at American Family Children’s Hospital in Madison, 
Wis. For weeks his brain had been swelling with fluid, and a battery of tests had failed to 
reveal the cause. 
 

The doctors told his parents, Clark and Julie, that they wanted to run one more test with 
an experimental new technology. Scientists would search Joshua’s cerebrospinal fluid for 
pieces of DNA. Some of them might belong to the pathogen causing his encephalitis. 
 

The Osborns agreed, although they were skeptical that the test would succeed where so 
many others had failed. But in the first procedure of its kind, researchers at the University 
of California, San Francisco, managed to pinpoint the cause of Joshua’s problem — 
within 48 hours. He had been infected with an obscure species of bacteria. Once 
identified, it was eradicated within days. 
 

The case, reported on Wednesday in The New England Journal of Medicine, signals an 
important advance in the science of diagnosis. For years, scientists have been sequencing 
DNA to identify pathogens. But until now, the process has been too cumbersome to yield 
useful information about an individual patient in a life-threatening emergency. 
 

 “This is an absolutely great story — it’s a tremendous tour de force,” said Tom Slezak, 
the leader of the pathogen informatics team at the Lawrence Livermore National 
Laboratory, who was not involved in the study. 
 

Mr. Slezak and other experts noted that it would take years of further research before 
such a test might become approved for regular use. But it could be immensely useful: Not 
only might it provide speedy diagnoses to critically ill patients, they said, it could lead to 
more effective treatments for maladies that can be hard to identify, such as Lyme disease. 
 

Diagnosis is a crucial step in medicine, but it can also be the most difficult. Doctors 
usually must guess the most likely causes of a medical problem and then order individual 
tests to see which is the right diagnosis. 
The guessing game can waste precious time. The causes of some conditions, like 
encephalitis, can be so hard to diagnose that doctors often end up with no answer at all. 
 

 “About 60 percent of the time, we never make a diagnosis” in encephalitis, said Dr. 
Michael R. Wilson, a neurologist at the University of California, San Francisco, and an 
author of the new paper. “It’s frustrating whenever someone is doing poorly, but it’s 
especially frustrating when we can’t even tell the parents what the hell is going on.” 
 

For the last decade, researchers at the university have been working on methods for 
identifying pathogens based on their DNA. In 2003 Dr. Joseph DeRisi, a biochemist at https://amplab.cs.berkeley.edu/2014/06/04/snap-helps-save-a-life/5

SNAP

F. Nothaft, et. al., “Rethinking Data-Intensive                                                                       
Science Using Scalable Analytics Systems”,                                                                    
ACM SIGMOD Conf., June 2015. 

$214.39

$78.92
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Integrating the “P” in AMP
Optimization for        
human-in-the-loop 
analtyics (AMPCrowd)
•  SampleClean
•  Straggler Mitigation
•  Pool Maintenance
•  Active Learning

60



BDS Meets Internet of  Things
Streaming and Real Time

What to keep, what to drop

Edge Processing

Privacy

Partitions, Fault Tolerance, Eventual Consistency, 
Order-dependence
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Big Data Software Moves Fast
We looked at the following trends:

1)  Integrated Stacks vs Silos

2)  “Real-Time” Redux

3)  Machine Learning and Advanced Analytics

4)  Serving Data and Models

5)  Big Data Software + X <HPC, People, IoT,…>
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    To find out more or 
get involved:

amplab.berkeley.edu

franklin@berkeley.edu
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Thanks to NSF CISE Expeditions in Computing,  DARPA XData,  
Founding Sponsors:  Amazon Web Services, Google, IBM, and SAP,

the Thomas and Stacy Siebel Foundation,
all our industrial sponsors and partners, and all the members of the AMPLab Team.63


