
RDF Big Data Management on top of Spark

Olivier Curé1, Hubert Naacke2, Tendrie Randriamalala2, Mohamed-Amine Baazizi2, Bernd Amann2

1 Université Paris-Est, LIGM, CNRS UMR 8049, France
olivier.cure@u-pem.fr

2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
CNRS, UMR 7606, LIP6, F-75005, Paris, France

{firstname.lastname}@u-pem.fr

1 Big Data et RDF

Modern information and knowledge-centric applications produce, store, integrate, query, analyze and visual-
ize rapidly growing data sets. Traditional data processing technologies (data management and warehousing
systems) are inadequate for processing this data and for responding to the new Big Data challenges (the
Four+ V’s). A first important challenge related to data volume and velocity concerns data and processing
scalability which is achieved through generic massively distributed parallel data processing architectures like
Hadoop 3, Spark 4 and Flink 5. A second challenge related to data variability concerns the definition and
implementation of flexible semi-structured / semantic data models and languages for facilitating complex
semantic data representation, integration and access as a complement to traditional structured SQL database
systems (noSQL). The Resource Description Framework (RDF) is one of the first data models for modeling
and processing this kind of data. Some relevant application examples are the Semantic Web’s Linked Open
Data (LOD) cloud which contains over 60 billions RDF triples or the data originating from Schema.org
annotations in Web documents.

2 RDF data storage and processing

RDF data takes the form of triples consisting of a (subject, predicate, object) tuple. Intuitively, a subject
is related to an object via a given predicate. Such a set of triples forms a directed, labeled graph. This
graph category can be considered as a superset of the property graph supported in NoSQL graph stores
such as Neo4J6 and Titan7. As a logical data model, RDF does not impose anything regarding a physical
storage approach. Hence, many kinds of RDF stores [1] have emerged, either designed on top of a database
management system, e.g., relational or NoSQL, or implemented from scratch by taking benefits of graphical
modeling and processing aspect. Most of the existing RDF stores make an intensive use of indexes for
processing SPARQL queries, e.g., RDF-3X [4] defines 15 indexes of triple elements. While being efficient at
generating optimized query plans, they also present some limitations. In the first hand, the cost of creating
and maintaining indexes over data sets of billions of RDF triples is prohibitive. On the other hand, even in
the cloud computing era, the storage space is not infinite and has a certain cost. This is particularly relevant
in our setting since we aim to store most of the data in main-memory. In the HAQWA platform (Hash-based
And Query Workload-Aware distributed RDF store), we claim that an index-free RDF Store (and graph
store in general) is viable.

In such a context, the only data access method is data scanning. The four main contributions of HAQWA
that make a scan-oriented query execution plans possible, are:

3 http://hadoop.apache.org/
4 http://spark.apache.org/
5 http://flink.apache.org/
6 http://neo4j.com/
7 http://thinkaurelius.github.io/titan/



– less data scanning: we provide a compact data encoding approach that ensures query answering com-
pleteness in the face of common inferences. This encoding approach supports a light materialization
approach that can be considered as a trade-off between materialization and query reformulation.

– fast data reading: the encoded data is mostly in main-memory and does not require any serialization or
disk access.

– fast data processing: we propose fast matching operations which are particularly adapted to SPARQL
processing and associated reasoning services.

– few scan operations: we propose an efficient scan operator that ensures that a single scan is sufficient for
star-shaped queries. In chain queries, the resulting star sub-queries are efficiently joined using existing
parallel hash join operators.

Our HAQWA prototype is implemented over the Apache Spark [5]. Currently considered as the state-
of-the-art in clustering computing framework, it ensures high availability, fault-tolerance and scalability and
provides high performance by making an intensive use of the main-memory.

3 Talk Outline

In this talk, we will present an overview of HAQWA’s architecture which has been implemented and
validated by experimentation conducted over large RDF datasets of several hundred millions and billions of
triplets. In particular, we will provide details about our platform’s main features:

– a novel RDF triples hash-based distribution and allocation, supporting workload aware replication, strate-
gies [2].

– a compressed semantic-enabled dictionary encoding that proposes a trade-off between triple materializa-
tion and query reformulation [3].

– a parallel SPARQL query engine that outperforms existing Spark query processing based on DataFrame.
This is achieved by optimizing star-shaped query graph patterns.

We will emphasize on different real-world RDF data processing use cases and ongoing research
projects, e.g., capturing and querying over IoT sensor data, reasoning over RDF streams. Finally, we will
highlight some important challenges such as reasoning over distributed unbounded data, query aware
replication for RDF federation, interactions between query processing, reasoning and visualization, e.g.,
inferring over navigation traces.

References

1. O. Curé and B. Guillaume, editors. RDF Database Systems: Triples Storage and SPARQL Query Processing.
Morgan Kaufmann, Boston, MA, USA, 1st edition, 2015.

2. O. Curé, H. Naacke, M. A. Baazizi, and B. Amann. On the evaluation of RDF distribution algorithms implemented
over apache spark. In Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge Base
Systems co-located with 14th International Semantic Web Conference (ISWC 2015), Bethlehem, PA, USA, October
11, 2015., pages 16–31, 2015.

3. O. Curé, H. Naacke, T. Randriamalala, and B. Amann. Litemat: a scalable, cost-efficient inference encoding
scheme for large RDF graphs. CoRR, abs/1510.03409, 2015.

4. T. Neumann and G. Weikum. The rdf-3x engine for scalable management of rdf data. VLDB J., 19(1):91–113,
2010.

5. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing with working
sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA, June 22,
2010, 2010.

2


